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INTRODUCTION

By definition, an in vitro–in vivo correlation (IVIVC) is 
a predictive mathematical model that describes the 
relationship between the in vitro property of a dos-

age form and its in vivo response (1). It is an important tool 
for the development of dosage forms by making it possible 
to anticipate in vivo behavior of a drug based on cheap and 
reproducible in vitro assays. Dissolution testing as a surro-
gate of bioassay is attractive, and due to the substantial 
cost reduction, is a focus of the pharmaceutical industry 
and regulatory agencies. However, establishing IVIVC is 
still a challenge that not everyone attempts. According to 
Sharp (2), from 2009 to 2012, FDA received 36 applications 
(NDA and IND) with IVIVC established. Development of the 
most valuable point-to-point Level A IVIVC is not a trivial 
task as it requires three well-established key elements:
• Bioassay (in vivo data preferably including iv profile).
• Dissolution tests.
• Modeling.

Despite the FDA guidance introducing the concept and 
development of IVIVC methodology (1), there is currently 
no complete and generic procedure that guarantees IVIVC 
establishment in all cases. Since dissolution testing and 
modeling are the most flexible elements of IVIVC, current 
trends for development of IVIVC methods mainly include 
biorelevant dissolution testing and sophisticated modeling 
techniques. As we represent the latter field, we would like 
to introduce our point of view demonstrating potential of 

empirical modeling methods in IVIVR development, where 
IVIVR is understood as an extension of IVIVC beyond the 
domain of linear modeling (3). The aim of this work is to 
introduce currently available tools suitable for an empirical 
approach to establishing IVIVR.

METHODOLOGY
Modeling Tools and Approaches 

Modeling tools belonging to the computational 
intelligence area were chosen for this study: decision 
trees, artificial neural networks, genetic programming, and 
recently published tool RIVIVR. Due to its mature stage of 
development and wide recognition in the life sciences area, 
the R statistical environment (4) was chosen as our major 
platform for running the above-mentioned modeling 
systems. 

Random Forest (RF) is a tree-based ensemble 
system, where many tree predictors are stacked together 
to form one model. Each tree is created on an independent 
and random sample taken from the training dataset. The 
generalization error of a forest depends on the errors of 
individual trees and the correlation among the trees (5). 
Random forests are suitable for classification problems, 
but they have been very efficient with regression and 
feature selection problems, too. For running this class 
of CI algorithm, we used the randomForest module of R  
statistical environment (6).

Artificial neural networks (ANNs) are well-known 
modeling tools built in a manner similar to biological neural 
systems. A massive system of interconnections among 
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units of ANNs together with well-established learning 
algorithms are sources of superb cognitive abilities of ANNs. 
The most common ANNs are so-called feed-forward ANNs 
with unidirectional signal processing and a supervised 
learning paradigm of work. For this class of tools, we used 
the R module monmlp (7), which from a practical point of 
view is characterized by highly reproducible results and 
relatively quick model development.

Genetic programming (GP) is a bioinspired 
algorithm based on evolution principles to solve complex 
problems. A high-level problem definition is solved into a 
creation of random solutions that are progressively refined 
through the process of variation and selection until a 
satisfactory solution is found. Artificial chromosomes are 
operational units undergoing several genetic operations 
like mutation, deletion, insertion, and crossing-over. 
The resulting solutions can be expressed in the form of 
mathematical equations, thus no more “black-box” problem 
is experienced when dealing with the final model. We 
found the R module rgp (8) very effective and used its so-
called “symbolic regression” mode for models developed 
and described in this work. 

RIVIVR is a new tool developed by Mendyk (9) for a 
direct, convolution-based, correlation of dissolution profiles 
with their pharmacokinetic counterparts. It is based on the 
optimization approach, where optimized parameters are 
points of a numerically developed iv time–concentration 
curve (in silico iv profile) used for convolution of the 
PK profile representing po administration of particular 
formulation. Once optimized on two or three available 
formulations, the in silico iv profile is used for convolution-
based prediction of a new formulation PK profile based 
on the new dissolution profile, thus accounting for the 
external validation. 

The algorithm of RIVIVR execution is represented by 
following pseudo-code:
• gather in vitro and in vivo data—at least 2 formulations 

with different release rates
• step = 1
• F step = 1 THEN initialize artificial iv profile ELSE update 

artificial iv profile from p. 5
• step = step +1
• modify artificial iv profile
• convolve artificial iv profile with in vitro profile
• compare convolved PK profile with its corresponding 

observed counterpart
• compute prediction error 
• IF error <= stop criterion THEN exit ELSE go back to p. 3

The above-mentioned procedure is realistic when 
using a strong optimization tool capable of global 
optimization with many adjustable parameters. R package 
GenSA (10), a general simulated annealing algorithm, works 
efficiently in this task and was therefore implemented 
as an integral part of RIVIVR. Default settings of RIVIVR 
include 100 points representing an artificial iv profile, 
which is initialized at the step no. 1 averaging in vivo 

profiles available as tutorial data. No information about the 
validation profile is included in this procedure.

Data 
The data were extracted from the literature by 

careful selection of papers including both in vitro and in 
vivo data for at least three formulations with attempts 
to establish any form of IVIVC regardless of its level. To 
provide numerical representation of the profiles, graphs 
were scanned and processed by g3data software (11). 
Additionally, dissolution profiles subjected to model-based 
analysis, where several kinetic and empirical models were 
fitted and the parameters of the best-fitting models were 
added to the database to enhance the information gain of 
the dissolution data. In case of different drugs, input vector 
length could be different because of expected variations 
in fitting results. In other words, some models will be and 
some will not be included in certain cases. A threshold of 
normalized root-mean-squared error (NRMSE) (12) equal 
to 10% was applied to make the above distinction. Model-
based characterization of the dissolution profiles was 
performed using KinetDS software (13). Several models 
were used in this procedure: Weibull, Hill, Korsmeyer–
Peppas, Michaelis–Menten, Hixson–Crowell, Higuchi 
and zero- to third-order kinetics. Enhanced dissolution 
data sets were used for all the modeling tools described 
above except for the RIVIVR. Additionally, to synchronize 
the time scale of PK and dissolution profiles, a time-axis 
extension procedure was developed. Since in all cases 
the dissolution test protocol involved a shorter assay time 
than the bioassay, the time-axis extension procedure was 
performed as follows:
• Additional time point added to the in vitro dissolution 

profile reflecting last time point of the corresponding PK 
profile.

• Q value (cumulative drug amount released) for the 
above time point set equal to the last Q value of the 
original dissolution profile thus assuming no changes in 
the dissolution over the extended time.

• Resampling of both in vitro and in vivo curves with pchip 
routine of R package “signal” with a sampling step of 0.05 
h to ensure overlapping time points in both profiles.

• Since RIVIVR is equipped with its own autonomous 
curve-sampling procedure, the above was performed for 
RIVIVR without final resampling of the profiles. 

Modeling Procedure
The modeling approach was based on a simple 

assumption that it is possible to create a direct relationship 
between in vivo and in vitro data. Therefore, inputs for 
modeling tools were always in vitro data, whereas a PK 
profile was expected as the output (Figure 1). For each 
case of data identified in the literature, modeling included 
an estimation of internal and external validation error 
expressed as prediction error PE(%) both for Cmax and 
AUC0-t  (1). Based on the dissolution kinetics, a standard 
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approach was employed where formulations with fast 
(F) and slow drug release rates (S) were used as a model 
base, thus their PEs(%) accounted for internal validation, 
whereas a moderate release rate (M) formulation was 
used for external validation. If there were more than 
three formulations available, then moderate-slow (MS), 
moderate-fast (MF), or both, formulations were introduced 
to the internal validation procedure. Computations were 
performed with use of an HPC cluster empowered with 
340 threads and working under a Linux operating system 
(openSUSE) with self-written grid management software.

RESULTS AND DISCUSSION
After the search and selection phase, eight papers 

were chosen as a source of data for this study, containing 
dissolution and in vivo data for seven different model 
drugs: metformin (14), diltiazem (15, 16), metoprolol (17), 
ketoprofen (18), divalproex sodium (19), pramipexole (20), 
and oxycodone (21).

The modeling phase was carried out independently 
for each one of the tools described above and resulted in 
selection of the best generalizing models in each group, 
namely ANNs, RF, GP, and RIVIVR. A summary of external 
and internal validation of the best models in each class 
is included in Tables 1 and 2 with internal validation 
provided for GP and RIVIVR only. Our major focus on 
external validation was based on the assumption that to 
select the most suitable modeling tool, one needs the 
most challenging testing conditions. A brief analysis of 
the results leads to the conclusion that none of the tools 
completely succeeded in IVIVR development. Each tool 
failed at least twice in meeting the external validation 
PE(%) criterion of 10% with GP exhibiting the highest 
success ratio of 75% (Table 1). In terms of absolute average 
PE(%), the best predictability for Cmax was observed for RF, 
whereas RIVIVR was superior for AUC0-t. In this ranking, GP 
was always in second position. Taking into account that GP 

results are mathematical formulas, GP might be regarded 
as a valuable tool for IVIVR development.

where Cin_vivo is the drug concentration in vivo, In9 is the 
dissolution/PK profile time point, In10 is Qt, In11 is Qt-1, and 
C1 is the equation constant (1.3757).

The formula presented above shows one example of 
the many results generated after extensive experiments 
with the GP algorithm for the oxycodone dataset. The 
dataset itself and the model implemented in the R script 
are available from the “data/oxycodone” section of the 
supplementary materials (22). This equation looks simple 
enough and represents direct mapping of the dissolution 
profile into the PK profile without any additional  
information. In the course of its work, GP automatically 
reduced input variables from the original 11 inputs to the 
three-element vector. Selected crucial variables for this 
data set included only a time variable and a dissolution 
profile presented as the amounts of drug dissolved (Q) 
in a specified time point (t) and the previous one (t-
1). It is an example of feature selection abilities of GP 
leading to the simplification of the final model. External 
validation for the oxycodone dataset obtained with this 
equation is presented in Figure 2. It clearly demonstrates 
good accordance between the simulated results and 
the observed ones. It is noteworthy that the oxycodone 
example was well represented by every tool used in this 
study. In case of the other data sets, complexity of the 
final models is substantially higher and therefore a full 
report of the discovered equations is presented in the 
supplementary materials (22). An interesting comparison 
of our results could be made with the ones obtained in 
the original source paper for diltiazem_1 data (15), where 
authors failed to meet predictability criteria for both internal 
and external validation using a deconvolution approach. 
On the contrary, although very complex (supplementary 

Figure 1. Experimental setup—input and output data.

Figure 2. External validation for oxycodone dataset resulting from GP model (eq 1, 
PRED_GP).
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materials eq 2), the equation derived in our study resulted 
in an internal validation error below 15% (Table 2) and 
external validation error for moderate formulation as 10% 
for Cmax and 5% for AUC0-t (Table 1). Yamashita et al. (23) also 
modeled with GP the data from the paper of Sirisuth et al. 
(15) and concluded suitability of GP for this task; however, 
they did not provide an estimation of external validation 
error or express their internal validation errors as PE(%). 
The above findings point to the conclusion that GP is an 
efficient technique to find a predictable model, yet overall 
efficiency of this tool is substantially reduced by very 
long execution time. Development of an average model 
in this study took ca. two weeks of continuous work of a 
professional PC workstation based on Intel Xeon CPUs and 
capable of 24 threads parallel execution. This is a serious 
drawback of this technique, and there is a limited control 
over complexity/predictability ratio of the final models 
when using GP. 

To overcome these obstacles, a new tool was 
developed and applied: RIVIVR. Regarding the above 
example of Sirisuth et al. (15), RIVIVR exhibited lower 
external validation errors than GP (5% and 1% for Cmax and 
AUC0-t, respectively, Table 1) yet slightly higher internal 
validation errors reaching up to 15% for Cmax (Table 2). In 
general, it could be concluded that predictability for both 
tools is comparable (Figure 3A), yet execution time favors 
RIVIVR as it approaches four minutes on a high-performance 
PC workstation like the one used for GP execution for about 

Table 1. External Validation as PE(%) for Cmax and AUC0-t

Dataset  ANNs   Random Forest   GP   RIVIVR
 Cmax  AUC0-t Cmax  AUC0-t Cmax  AUC0-t Cmax  AUC0-t

metformin (13) 40  29 9  10 18  18 11  11

diltiazem_1 (14) 3  13 4  3 10  5 5  1

metoprolol (16) 0  1 2  11 3  14 9  6

ketoprofen (17) 4  0 6  9 7  1 0  8

diltiazem_2 (15) 27  9 27  18 10  7 15  16

divalproex_s (18) 15  4 1  3 2  4 29  4

pramipexole (19) 5  2 12  5 15  6 9  4

oxycodone (20) 2  3 7  0 4  1 1  1

 Average 12.0  7.6 8.5  7.4 8.6  7.0 9.9  6.4

 FDA crit.   50.0%   62.5%   75.0%   62.5%

Table 2. Internal Validation for Best Modeling Tools

Dataset
  GP   RIVIVR

 Cmax  AUC0-t Cmax  AUC0-t

metformin (F) 15  15 12  20
metformin (S) 19  9 17  45
diltiazem_1 (F) 15  0 4  6
diltiazem_1 (S) 10  4 15  10
metoprolol (F) 5  6 2  2
metoprolol (S) 3  14 2  3
ketoprofen (F) 8  5 1  0
ketoprofen (MS) 16  13 9  1
ketoprofen (S) 10  14 6  2
diltiazem_2 (F) 25  1 2  6
diltiazem_2 (S) 9  8 23  33
divalproex_s (F) 10  10 1  5
divalproex_s (S) 25  6 0  7
pramipexole (F) 19  9 7  2
pramipexole (MF) 3  1 4  1
pramipexole (S) 1  5 10  7
oxycodone (F) 8  8 6  2
oxycodone (S) 6  8 2  3

Errors expressed as PE(%) for Cmax and AUC0-t

Figure 3. Results for diltiazem_1 dataset (OBS): (A) external validation for GP (PRED_GP) 
and RIVIVR (PRED_RIVIVR); (B) artificial iv profile generated by RIVIVR.
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two weeks. It is a clear indication that a major advantage 
of RIVIVR is its ability to map dissolution data directly with 
PK profiles using the profiles as the only input information 
and executing on an average PC or laptop. Therefore, it 
could be used for purely empirical reasoning by a trial-and-
error approach just to check if this simplistic convolution-
based approach is feasible in a particular case. Although 
RIVIVR does not present its results as a mathematical 
formula, it generates an artificial iv profile used in the 
convolution procedure to derive po profiles. This iv curve 
is also reported and presented as an output, thus it can be 
used with other modeling approaches providing means for 
RIVIVR validation (Figure 3B).

RIVIVR shares some code with and uses the “NumConv” 
routine from Rivivc, which is an official R module for IVIVC 
developed in our lab (9). Because of that, RIVIVR does not 
require sampling points of all the curves to be the same 
since they are automatically adjusted by the software 
itself with a user-controlled accuracy level. Moreover, it 
is not relevant if the dissolution data are presented as 
percentages or in the range of 0–1, as RIVIVR does not use 
any mechanistic assumptions and the resulting artificial iv 
curve reflects the dissolution data range elegantly. Based 
on the presented reasoning, it has to be acknowledged that 
the artificial iv curve derived numerically by RIVIVR (Figure 
3) has no physical meaning and cannot be interpreted in 
such a way. In this approach, it is more of a scaling factor 
than the concentration–time profile.

The above reasoning did not include RF or ANNs. 
For the latter, its poor predictability is an explanation of 
this exclusion, yet RF excelled in terms of predictability 
of Cmax. The reason for our focus on GP and RIVIVR is the 
transparency of these tools, which allows full insight 
into their mode of work and way of data handling. This is 
certainly an advantage in terms of industrial applications 
due to the need for full validation of the models. On the 
contrary, ANNs are classical examples of “black-box” 
models that are impossible to reveal their internal way of 
data processing. In theory, the RF mode of work should be 
traceable as a set of choices among branches and nodes 
of decision trees. However, RF is an ensemble system 
containing several hundreds of decision trees in a single 
model. This poses a serious problem with any approach 
to disclose internal information flow and complete paths 
of decision-making performed by the system to provide 
its final answer corresponding to the data presented 
at the input. For the data used in this study, the largest 
RF models contained 1,000 trees, each one built on a 
maximum number of 600 nodes. These numbers provide a 
clear perspective on the complexity of RF models. The final 
point is the execution time and required computational 
resources. In this work for ANNs, we needed roughly three 
days of work of the Xeon-based 24-threads PC workstation 
cited above, whereas for RF it decreased to 4 h. Still these 
models cannot be developed efficiently on a regular PC or 
a laptop.

CONCLUSIONS
We have demonstrated that empirical models can 

be used for direct mapping of dissolution profiles to PK 
profiles as confirmed by other authors (23). Such an IVIVR 
approach is especially applicable where there are no results 
available from iv administration as required by classical 
deconvolution/convolution methods. However, this is a still 
a high-risk approach as among successful correlations, our 
results included several failures in meeting FDA validation 
criteria. Moreover, classical CI tools like ANNs or Random 
Forest suffer from a commonly known problem of being 
“black boxes” and are not good subjects for industrial 
applications due to their inability of full validation of the 
model. Regarding the above, we provided ready-to-use 
solutions, where no more hidden relationships are present. 
A simple mathematical formula representing an IVIVR 
model is a good alternative to any other approach, yet its 
development from scratch is not a trivial task. We found 
the R module rgp and its mode of running called “symbolic 
regression” apt to this task and successful in terms of 
predictability. However, the cost of model development 
in terms of required computational power and execution 
time prevents us from using it as a primary tool. Thus, 
we developed RIVIVR software that employs a classical 
convolution approach and optimization of artificial, created 
numerical curves—the latter representing impulse, namely 
iv administration PK profile. RIVIVR, though moderately 
precise, can be a valuable first-choice tool for empirical 
IVIVR owing to its short execution time and simplicity of 
design. 

In the future, further development is envisaged for 
RIVIVR that includes:
• Code optimization for speed improvement.
• Improvement of stability and predictive power of models 

by introduction of carefully limited noise in the tutorial 
data.

• Graphical user interface (GUI).
We provide all of the above-mentioned tools as 

ready-to-use R scripts available under GNU GPL license via 
sourceforge.net webpage:
• GP (24)
• RF (25)
• ANNs (26)
• RIVIVR (27)

The above software is to be used AS IS without 
any warranty or liability, yet at no cost and free to use 
both personally and commercially. We believe that this 
contribution will improve development of good quality 
IVIVC and IVIVR models.

SUPPLEMENTARY MATERIALS
To make it easier to follow our modeling strategies 

and to facilitate readers’ own experiments, we published 
Supplementary materials (22) through the sourceforge.
net server. Supplementary materials contain the following 
elements:
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• A full report of GP modeling for all datasets accompanied 
with a short description of the “data” section 
(SupplementaryMaterials_Equations.pdf ) is in the root 
directory.

• All datasets for developing equations with GP 
(learningSet.txt, testingSet.txt) and 10-fold cross-
validation procedure are in the “data” directory and its 
subdirectories named after datasets presented in Table 1.

• Standard subdirectories “GP_modeling” and 
“optimization”—the former with R scripts for GP 
modeling and the latter with R scripts for testing internal 
and external validation of the equations developed with 
GP—are found in the subdirectories of “data” directory.
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