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ABSTRACT

IVIVR as an extension of IVIVC beyond the domain of linear modeling is a predictive model that binds the in vivo
PK profile with the in vitro dissolution profile of a particular drug. Several computational intelligence-modeling tools for
IVIVR were chosen and tested in this study: decision trees (randomForest), artificial neural networks (monmlp), genetic
programming (rgp), and a recently published tool, RIVIVR. R statistical environment was used for numerical experiments.
All of the above-mentioned tools succeeded in the creation of empirical relationships between in vivo and in vitro
profiles without the need of the additional impulse curve (intravenous [iv] profile). The best results were found for genetic
programming and decision trees. RIVIVR achieved a superior cost—effectiveness ratio, namely, short time of execution and

high level of automation.

KEYWORDS: In vitro-in vivo relationship (IVIVR); empirical modeling; computational intelligence (Cl); open source; R

statistical environment.

INTRODUCTION

a predictive mathematical model that describes the
relationship between the in vitro property of a dos-
age form and its in vivo response (7). It is an important tool
for the development of dosage forms by making it possible
to anticipate in vivo behavior of a drug based on cheap and
reproducible in vitro assays. Dissolution testing as a surro-
gate of bioassay is attractive, and due to the substantial
cost reduction, is a focus of the pharmaceutical industry
and requlatory agencies. However, establishing IVIVC is
still a challenge that not everyone attempts. According to
Sharp (2), from 2009 to 2012, FDA received 36 applications
(NDA and IND) with IVIVC established. Development of the
most valuable point-to-point Level A IVIVC is not a trivial
task as it requires three well-established key elements:
- Bioassay (in vivo data preferably including iv profile).
« Dissolution tests.
« Modeling.

Despitethe FDAguidanceintroducingtheconceptand
development of IVIVC methodology (1), there is currently
no complete and generic procedure that guarantees IVIVC
establishment in all cases. Since dissolution testing and
modeling are the most flexible elements of IVIVC, current
trends for development of IVIVC methods mainly include
biorelevant dissolution testing and sophisticated modeling
techniques. As we represent the latter field, we would like
to introduce our point of view demonstrating potential of

By definition, an in vitro—in vivo correlation (IVIVC) is

*Corresponding author.

Dissolution Technologies | MAY 2015

empirical modeling methods in IVIVR development, where
IVIVR is understood as an extension of IVIVC beyond the
domain of linear modeling (3). The aim of this work is to
introduce currently available tools suitable for an empirical
approach to establishing IVIVR.

METHODOLOGY
Modeling Tools and Approaches

Modeling tools belonging to the computational
intelligence area were chosen for this study: decision
trees, artificial neural networks, genetic programming, and
recently published tool RIVIVR. Due to its mature stage of
development and wide recognition in the life sciences area,
the R statistical environment (4) was chosen as our major
platform for running the above-mentioned modeling
systems.

Random Forest (RF) is a tree-based ensemble
system, where many tree predictors are stacked together
to form one model. Each tree is created on an independent
and random sample taken from the training dataset. The
generalization error of a forest depends on the errors of
individual trees and the correlation among the trees (5).
Random forests are suitable for classification problems,
but they have been very efficient with regression and
feature selection problems, too. For running this class
of Cl algorithm, we used the randomForest module of R
statistical environment (6).

Artificial neural networks (ANNs) are well-known
modeling tools built in a manner similar to biological neural
systems. A massive system of interconnections among



units of ANNs together with well-established learning
algorithms are sources of superb cognitive abilities of ANNs.
The most common ANNs are so-called feed-forward ANNs
with unidirectional signal processing and a supervised
learning paradigm of work. For this class of tools, we used
the R module monmlp (7), which from a practical point of
view is characterized by highly reproducible results and
relatively quick model development.

Genetic programming (GP) is a bioinspired
algorithm based on evolution principles to solve complex
problems. A high-level problem definition is solved into a
creation of random solutions that are progressively refined
through the process of variation and selection until a
satisfactory solution is found. Artificial chromosomes are
operational units undergoing several genetic operations
like mutation, deletion, insertion, and crossing-over.
The resulting solutions can be expressed in the form of
mathematical equations, thus no more“black-box” problem
is experienced when dealing with the final model. We
found the R module rgp (8) very effective and used its so-
called “symbolic regression” mode for models developed
and described in this work.

RIVIVR is a new tool developed by Mendyk (9) for a
direct, convolution-based, correlation of dissolution profiles
with their pharmacokinetic counterparts. It is based on the
optimization approach, where optimized parameters are
points of a numerically developed iv time-concentration
curve (in silico iv profile) used for convolution of the
PK profile representing po administration of particular
formulation. Once optimized on two or three available
formulations, the in silico iv profile is used for convolution-
based prediction of a new formulation PK profile based
on the new dissolution profile, thus accounting for the
external validation.

The algorithm of RIVIVR execution is represented by
following pseudo-code:

« gather in vitro and in vivo data—at least 2 formulations
with different release rates

.« step=1

« F step = 1 THEN initialize artificial iv profile ELSE update
artificial iv profile from p. 5

. step =step +1

- modify artificial iv profile

« convolve artificial iv profile with in vitro profile

« compare convolved PK profile with its corresponding
observed counterpart

« compute prediction error

« IF error <= stop criterion THEN exit ELSE go back to p. 3

The above-mentioned procedure is realistic when
using a strong optimization tool capable of global
optimization with many adjustable parameters. R package
GenSA (10), a general simulated annealing algorithm, works
efficiently in this task and was therefore implemented
as an integral part of RIVIVR. Default settings of RIVIVR
include 100 points representing an artificial iv profile,
which is initialized at the step no. 1 averaging in vivo

profiles available as tutorial data. No information about the
validation profile is included in this procedure.

Data

The data were extracted from the literature by

careful selection of papers including both in vitro and in
vivo data for at least three formulations with attempts
to establish any form of IVIVC regardless of its level. To
provide numerical representation of the profiles, graphs
were scanned and processed by g3data software (77).
Additionally, dissolution profiles subjected to model-based
analysis, where several kinetic and empirical models were
fitted and the parameters of the best-fitting models were
added to the database to enhance the information gain of
the dissolution data. In case of different drugs, input vector
length could be different because of expected variations
in fitting results. In other words, some models will be and
some will not be included in certain cases. A threshold of
normalized root-mean-squared error (NRMSE) (72) equal
to 10% was applied to make the above distinction. Model-
based characterization of the dissolution profiles was
performed using KinetDS software (73). Several models
were used in this procedure: Weibull, Hill, Korsmeyer—
Peppas, Michaelis-Menten, Hixson-Crowell, Higuchi
and zero- to third-order kinetics. Enhanced dissolution
data sets were used for all the modeling tools described
above except for the RIVIVR. Additionally, to synchronize
the time scale of PK and dissolution profiles, a time-axis
extension procedure was developed. Since in all cases
the dissolution test protocol involved a shorter assay time
than the bioassay, the time-axis extension procedure was
performed as follows:

- Additional time point added to the in vitro dissolution
profile reflecting last time point of the corresponding PK
profile.

« Q value (cumulative drug amount released) for the
above time point set equal to the last Q value of the
original dissolution profile thus assuming no changes in
the dissolution over the extended time.

« Resampling of both in vitro and in vivo curves with pchip
routine of R package “signal” with a sampling step of 0.05
h to ensure overlapping time points in both profiles.

- Since RIVIVR is equipped with its own autonomous
curve-sampling procedure, the above was performed for
RIVIVR without final resampling of the profiles.

Modeling Procedure

The modeling approach was based on a simple
assumption that it is possible to create a direct relationship
between in vivo and in vitro data. Therefore, inputs for
modeling tools were always in vitro data, whereas a PK
profile was expected as the output (Figure 1). For each
case of data identified in the literature, modeling included
an estimation of internal and external validation error
expressed as prediction error PE(%) both for Cy.x and
AUCy: (7). Based on the dissolution kinetics, a standard
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approach was employed where formulations with fast
(F) and slow drug release rates (S) were used as a model
base, thus their PEs(%) accounted for internal validation,
whereas a moderate release rate (M) formulation was
used for external validation. If there were more than
three formulations available, then moderate-slow (MS),
moderate-fast (MF), or both, formulations were introduced
to the internal validation procedure. Computations were
performed with use of an HPC cluster empowered with
340 threads and working under a Linux operating system
(openSUSE) with self-written grid management software.
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Figure 1. Experimental setup—input and output data.

RESULTS AND DISCUSSION

After the search and selection phase, eight papers
were chosen as a source of data for this study, containing
dissolution and in vivo data for seven different model
drugs: metformin (74), diltiazem (715, 16), metoprolol (17),
ketoprofen (18), divalproex sodium (79), pramipexole (20),
and oxycodone (27).

The modeling phase was carried out independently
for each one of the tools described above and resulted in
selection of the best generalizing models in each group,
namely ANNs, RF, GP, and RIVIVR. A summary of external
and internal validation of the best models in each class
is included in Tables 1 and 2 with internal validation
provided for GP and RIVIVR only. Our major focus on
external validation was based on the assumption that to
select the most suitable modeling tool, one needs the
most challenging testing conditions. A brief analysis of
the results leads to the conclusion that none of the tools
completely succeeded in IVIVR development. Each tool
failed at least twice in meeting the external validation
PE(%) criterion of 10% with GP exhibiting the highest
success ratio of 75% (Table 1). In terms of absolute average
PE(%), the best predictability for C,,,x was observed for RF,
whereas RIVIVR was superior for AUCy.. In this ranking, GP
was always in second position. Taking into account that GP
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results are mathematical formulas, GP might be regarded
as a valuable tool for IVIVR development.

[ I
Cinfvivo =3 In10 : Il’ln : exp(— % - Cl )

where G, vivo is the drug concentration in vivo, Ing is the
dissolution/PK profile time point, Inq is Q;, Inq7 is Q., and
C, is the equation constant (1.3757).
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Figure 2. External validation for oxycodone dataset resulting from GP model (eq 1,
PRED_GP).

The formula presented above shows one example of
the many results generated after extensive experiments
with the GP algorithm for the oxycodone dataset. The
dataset itself and the model implemented in the R script
are available from the “data/oxycodone” section of the
supplementary materials (22). This equation looks simple
enough and represents direct mapping of the dissolution
profile into the PK profile without any additional
information. In the course of its work, GP automatically
reduced input variables from the original 11 inputs to the
three-element vector. Selected crucial variables for this
data set included only a time variable and a dissolution
profile presented as the amounts of drug dissolved (Q)
in a specified time point (t) and the previous one (t-
1). It is an example of feature selection abilities of GP
leading to the simplification of the final model. External
validation for the oxycodone dataset obtained with this
equation is presented in Figure 2. It clearly demonstrates
good accordance between the simulated results and
the observed ones. It is noteworthy that the oxycodone
example was well represented by every tool used in this
study. In case of the other data sets, complexity of the
final models is substantially higher and therefore a full
report of the discovered equations is presented in the
supplementary materials (22). An interesting comparison
of our results could be made with the ones obtained in
the original source paper for diltiazem_1 data (75), where
authorsfailed to meet predictability criteria for bothinternal
and external validation using a deconvolution approach.
On the contrary, although very complex (supplementary



Table 1. External Validation as PE(%) for Cnax and AUC¢

Dataset ANNs Random Forest GP RIVIVR
Conax AUCo. Crnax AUCo. Crnax AUCo. Crnax AUC,;
metformin (13) 40 29 9 10 18 18 " "
diltiazem_1 (14) 3 13 4 3 10 5 5 1
metoprolol (16) 0 1 2 11 3 14
ketoprofen (17) 0 6 9 7 1
diltiazem_2 (15) 27 9 27 18 10 7 15 16
divalproex_s (18) 15 4 1 3 2 4 29
pramipexole (19) 5 2 12 5 15 6 9
oxycodone (20) 2 3 0 4 1 1
Average 12.0 7.6 8.5 7.4 8.6 7.0 2.9 6.4
FDA crit. 50.0% 62.5% 75.0% 62.5%
materials eq 2), the equation derived in our study resulted
in an internal validation error below 15% (Table 2) and A 07 ¢
external validation error for moderate formulation as 10% 60+
for Cnax and 5% for AUCy.¢ (Table 1). Yamashita et al. (23) also 504 9 ¢ OBS
modeled with GP the data from the paper of Sirisuth et al. = 04 —PRED_GP
(715) and concluded suitability of GP for this task; however, g —— PRED_RIVIVR
they did not provide an estimation of external validation £ 301
error or express their internal validation errors as PE(%). © 21
The above findings point to the conclusion that GP is an - \
efficient technique to find a predictable model, yet overall o
efficiency of this tool is substantially reduced by very B W 1 2 o B 4
long execution time. Development of an average model time (h)
in this study took ca. two weeks of continuous work of a
professional PC workstation based on Intel Xeon CPUs and
capable of 24 threads parallel execution. This is a serious B <
drawback of this technique, and there is a limited control 181
over complexity/predictability ratio of the final models )
when using GP. il
= 121
E 4
Table 2. Internal Validation for Best Modeling Tools .S': 0.8-
Dataset GP RIVIVR 061
Crnax AUC,. Crnax AUCo. 0.4
metformin (F) 15 15 12 20 021
metformin (S) 19 9 17 45 8 b @ Bt @ 5 Bm o a4
diltiazem_1 (F) 15 0 4 6 i
diltiazem_1 (5) 10 4 15 10 Hmeig)
metoprolol (F) 5 6 2 2 Figure 3. Results for diltiazem_1 ctlat.ase.t (OBS'): (A) external validation for GP (PRED_GP)
metoprolol (9) 3 2 5 3 and RIVIVR (PRED_RIVIVR); (B) artificial iv profile generated by RIVIVR.
ketoprofen (F) 8 5 1 0
ketoprofen (MS) 16 13 9 1 To overcome these obstacles, a new tool was
ketoprofen (S) 10 14 6 2 developed and applied: RIVIVR. Regarding the above
diltiazem_2 (F) 25 ! 2 6 example of Sirisuth et al. (15), RIVIVR exhibited lower
j:':;;fg;zs(s(l) 190 180 213 353 external validation errors than GP (5% and 1% for Crmax and
divalproex:s S 5 G 0 7 AUCy., respectively, Table 1) yet slightly higher internal
pramipexole (F) 9 5 = 3 validation errors reaching up to 15% for Cyax (Table 2). In
pramipexole (MF) 3 1 2 1 general, it could be concluded that predictability for both
pramipexole (5) 1 5 10 7 tools is comparable (Figure 3A), yet execution time favors
oxycodone (F) 8 8 6 2 RIVIVR as itapproaches four minutes on a high-performance
oxycodone (5) 6 8 2 3 PC workstation like the one used for GP execution for about

Errors expressed as PE(%) for Crax and AUCo.¢
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two weeks. It is a clear indication that a major advantage
of RIVIVR is its ability to map dissolution data directly with
PK profiles using the profiles as the only input information
and executing on an average PC or laptop. Therefore, it
could be used for purely empirical reasoning by a trial-and-
error approach just to check if this simplistic convolution-
based approach is feasible in a particular case. Although
RIVIVR does not present its results as a mathematical
formula, it generates an artificial iv profile used in the
convolution procedure to derive po profiles. This iv curve
is also reported and presented as an output, thus it can be
used with other modeling approaches providing means for
RIVIVR validation (Figure 3B).

RIVIVR shares some code with and uses the”NumConv”
routine from Rivivc, which is an official R module for IVIVC
developed in our lab (9). Because of that, RIVIVR does not
require sampling points of all the curves to be the same
since they are automatically adjusted by the software
itself with a user-controlled accuracy level. Moreover, it
is not relevant if the dissolution data are presented as
percentages or in the range of 0-1, as RIVIVR does not use
any mechanistic assumptions and the resulting artificial iv
curve reflects the dissolution data range elegantly. Based
on the presented reasoning, it has to be acknowledged that
the artificial iv curve derived numerically by RIVIVR (Figure
3) has no physical meaning and cannot be interpreted in
such a way. In this approach, it is more of a scaling factor
than the concentration-time profile.

The above reasoning did not include RF or ANNs.
For the latter, its poor predictability is an explanation of
this exclusion, yet RF excelled in terms of predictability
of Cmax. The reason for our focus on GP and RIVIVR is the
transparency of these tools, which allows full insight
into their mode of work and way of data handling. This is
certainly an advantage in terms of industrial applications
due to the need for full validation of the models. On the
contrary, ANNs are classical examples of “black-box”
models that are impossible to reveal their internal way of
data processing. In theory, the RF mode of work should be
traceable as a set of choices among branches and nodes
of decision trees. However, RF is an ensemble system
containing several hundreds of decision trees in a single
model. This poses a serious problem with any approach
to disclose internal information flow and complete paths
of decision-making performed by the system to provide
its final answer corresponding to the data presented
at the input. For the data used in this study, the largest
RF models contained 1,000 trees, each one built on a
maximum number of 600 nodes. These numbers provide a
clear perspective on the complexity of RF models. The final
point is the execution time and required computational
resources. In this work for ANNs, we needed roughly three
days of work of the Xeon-based 24-threads PC workstation
cited above, whereas for RF it decreased to 4 h. Still these
models cannot be developed efficiently on a regular PC or
a laptop.
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CONCLUSIONS

We have demonstrated that empirical models can
be used for direct mapping of dissolution profiles to PK
profiles as confirmed by other authors (23). Such an IVIVR
approach is especially applicable where there are no results
available from iv administration as required by classical
deconvolution/convolution methods. However, this is a still
a high-risk approach as among successful correlations, our
results included several failures in meeting FDA validation
criteria. Moreover, classical Cl tools like ANNs or Random
Forest suffer from a commonly known problem of being
“black boxes” and are not good subjects for industrial
applications due to their inability of full validation of the
model. Regarding the above, we provided ready-to-use
solutions, where no more hidden relationships are present.
A simple mathematical formula representing an IVIVR
model is a good alternative to any other approach, yet its
development from scratch is not a trivial task. We found
the R module rgp and its mode of running called “symbolic
regression” apt to this task and successful in terms of
predictability. However, the cost of model development
in terms of required computational power and execution
time prevents us from using it as a primary tool. Thus,
we developed RIVIVR software that employs a classical
convolution approach and optimization of artificial, created
numerical curves—the latter representing impulse, namely
iv administration PK profile. RIVIVR, though moderately
precise, can be a valuable first-choice tool for empirical
IVIVR owing to its short execution time and simplicity of
design.

In the future, further development is envisaged for
RIVIVR that includes:

« Code optimization for speed improvement.

+ Improvement of stability and predictive power of models
by introduction of carefully limited noise in the tutorial
data.

- Graphical user interface (GUI).

We provide all of the above-mentioned tools as
ready-to-use R scripts available under GNU GPL license via
sourceforge.net webpage:

- GP(24)

« RF (25)

« ANNs (26)

RIVIVR (27)

The above software is to be used AS IS without
any warranty or liability, yet at no cost and free to use
both personally and commercially. We believe that this
contribution will improve development of good quality
IVIVC and IVIVR models.

SUPPLEMENTARY MATERIALS

To make it easier to follow our modeling strategies
and to facilitate readers’ own experiments, we published
Supplementary materials (22) through the sourceforge.
net server. Supplementary materials contain the following
elements:



« Afull report of GP modeling for all datasets accompanied

- All datasets for

. Standard

with a short description of the “data” section
(SupplementaryMaterials_Equations.pdf) is in the root
directory.

developing equations with GP
(learningSet.txt, testingSet.txt) and 10-fold cross-
validation procedure are in the “data” directory and its
subdirectories named after datasets presented in Table 1.
subdirectories “GP_modeling” and
“optimization”—the former with R scripts for GP
modeling and the latter with R scripts for testing internal
and external validation of the equations developed with
GP—are found in the subdirectories of “data” directory.
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