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INTRODUCTION

Many pharmacologically active molecules are 
formulated as immediate-release (IR) solid 
dosage form drug products. Following oral 

administration, the diffusion of an active molecule from 
the gastrointestinal tract into systemic distribution 
requires the disintegration of the dosage form followed 
by the dissolution of the molecule in the stomach lumen. 
Its dissolution properties may have a direct impact on 
its bioavailability and subsequent therapeutic effect. 
Consequently, dissolution (or in vitro release) testing 
methods have been studied as possible surrogates for 
human bioavailability studies in addition to product 
quality control. 

In vitro dissolution testing as an analytical methodology 
measures drug release in liquid media. The method 
requires specialized laboratory equipment, following a 
well-defined protocol such as described in the United 
States Pharmacopeial convention reference (1). In vitro 
dissolution testing is frequently used as a surrogate 
measure of bioavailability. This avoids the risk and expense 
of human trials and facilitates the implementation of 
improvements in processes and products. Authorization 
to market a generic compound also makes use of 
dissolution profile comparisons. Consequently, in vitro 

dissolution testing has played an increasingly important 
role in drug development.

The 1997 FDA guidance on dissolution testing (2) 
describes three important uses for it: (1) assess lot-to-
lot quality of a drug product, (2) guide development of 
new formulations, and (3) ensure continuing product 
quality and performance after certain events, such as 
changes in formulation, the manufacturing process, the 
site of manufacture, or scale-up of the manufacturing 
process. In addition, for certain drugs, in vitro dissolution 
results might be sufficient to gain regulatory approval for 
post-marketing changes and waiver of bioequivalence 
requirements for lower-strength dosage forms as 
described by Moore and Flanner (3). A formal similarity 
evaluation is a regulatory requirement for this purpose 
as described in FDA guidances (2, 4–8) and the 2008 
EMA guidelines (9). Thus, the question of demonstrating 
similarity or equivalence between the reference and test 
drug dissolution curves is of both scientific and regulatory 
importance.

Various methods comparing drug dissolution profiles 
have been proposed. In general, they can be classified into 
three categories: model-independent approaches based 
on a similarity factor; model-independent methods using 
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multivariate statistical distance (MSD) test; and model-
dependent methods using parametric curves to describe 
dissolution profiles.

Model-Independent Approach Based 
on the f2 Similarity Statistic
Moore and Flanner (3) proposed a model-independent 
approach to measure the similarity between drug 
dissolution profiles of a test and reference formulation. 
The method includes calculations of two mathematical 
indices:

        and

  

where Ri and Ti are reference and test results, respectively, 
at time ti, i = 1, …, k, and wi is an optional weight factor. 
Subsequently, a similarity test procedure based on the 
difference factor f1 and similarity factor f2 with wi = 1 
was recommended in the FDA guidances for dissolution 
profile comparison (2, 5–8). Note that f2 = 100 when the 
two dissolution curves are identical. When f2 ≥ 50 (e.g., 
when |Ri – Ti| ≤ 10 for all i), the two dissolution profiles are 
deemed to be similar according to the FDA guidance for 
immediate-release (IR) solid oral dosage forms (2). While 
not explicitly stated, inference based on f2 is seemingly 
intended to test the null hypothesis: H0: f2

0 < 50 versus 
the alternative: H1: f2

0 ≥ 50, where

 

and E(Ri) and E(Ti) are the expected values of the ith 
dissolution measurements at time ti, i = 1, …, k, of reference 
and test batches across the population of dosage units, 
respectively. Since log10(x) is a concave function, applying 
Jenson’s inequality, it can be shown that E(f2) < f2

0. The 
bias of f2 was also empirically evaluated by Ma et al. (10). 
Since f2 underestimates the similarity measure f2

0, a test 
based on f2 is less likely to conclude similarity than one 
based on an unbiased estimator. A method based on bias 
correction was suggested by Shah et al. (11). The latter 
authors also explored the use of a bootstrap approach to 
construct a confidence interval on f2

0 since the sampling 
distribution of f2 is difficult to derive analytically as shown 
by Ma et al. (10). Other deficiencies of f2 as a similarity 
measure will be discussed further in later sections. A 
few other model-independent similarity factors have 
also been suggested in the literature such as the one 

given by Moore and Flanner (3) based on the index of 
Rescigno (12) originally used to compare plasma drug 
concentration curves and mean dissolution times. As with 
f2, these methods do not explicitly define the hypothesis 
of similarity, nor do they have the ability to demonstrate 
operating characteristics of the tests such as Type I and II 
errors.

Model-Independent Multivariate Approach
Another class of model-independent methods hinges on 
the normality assumption underlying the in vitro release 
values observed at different time points and constructs 
a measure of distance between two sets of multivariate 
random variables. Consider a dissolution study with times 
ti, i = 1, …, k. Let R  and T  denote the vectors of sample 
means, respectively, for reference and test dissolution 
measurements across k time points and let Sp be the 
pooled sample covariance matrix. Thus   

is the Hotelling’s T 2 statistic. It can be shown that 

follows an F distribution with k and 

n1 + n2 - k -1 degrees of freedom. A 95% confidence region 
of μR – μT is obtained as follows:

  

 
where                denotes the 5% quantile of an 
F-distribution with the given degrees of freedom. 

In cases where excessive variance is present, the FDA 
guidance (2) recommends an alternative multivariate 
statistical distance (MSD) equivalence test in place of 
using the f2 statistic. Tsong et al. (13) proposed a method 
that compares the maximum MSD, 

obtained over the (1 - α)% confidence region 
with the tolerance limit                    

where δ is the maximum allowable similarity limit at each 
sampling time, and J denotes the k × 1 vector of ones. 
Similarity is claimed if DM,α ≤ TL. Although |(μR – μT)i| ≤ δ, 
for i = 1, 2, …, k, implies DM,α ≤ TL, the converse is not true. 
Therefore, it is conceivable that the two dissolution curves 
may have a meaningful difference at particular sampling 
times, whereas the maximum MSD remains acceptable. 
Notice also that TL, as defined above, depends on the 
observed pooled sample variance Sp. Thus the definition 
of similarity will vary from data set to data set.
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Saranadasa (14) suggested a model-independent method 
under the assumption that the reference and test 
dissolution curves are parallel—one overlaps with the 
other after an upward or downward shift of d. A maximum 
shift dM is determined as the solution to the equation

  

where n = n1 + n2 − 2. The global similarity is achieved if 
dM ≤ δ. As the reference and test dissolution curves are 
seldom parallel, the method is of limited utility in practice.

One issue associated with the above multivariate distance 
methods is the difficulty in assessing their operating 
characteristics. Saranadasa and Krishnamoorthy (15), in 
an effort to address these shortcomings, developed a 
multivariate test of size α for assessing the similarity of 
two dissolution profiles assuming parallelism. Chow and 
Ki (16) used a time-series approach to account for the 
correlation between consecutive time points.

Model-Dependent Approach
Model-dependent methods are also listed in the 
regulatory guidances as alternative procedures for 
dissolution similarity testing. These rely on describing 
dissolution profiles through mathematical functions, 
based on an understanding of the dissolution processes. 
Because biological systems and related physiological–
chemical processes concerning drug dissolution are 
exceedingly complex, both mechanistic models (17–21) 
and empirical models such as the Weibull (22) have 
been proposed to describe dissolution concentration–
time profiles. Other functions that can be used to fit the 
dissolution profiles include exponential, probit, Gompertz, 
and logistic (23). In general, the Weibull was considered to 
be the most flexible (24, 25) in describing a wide variety of 
shapes. More recently, linear mixed effects and nonlinear 
mixed effects models have been suggested (25, 26). 
One advantage of these methods is that they permit an 
explicit specification of the covariance structure of the 
data. One potential pitfall of these methods is that the 
model parameters may be biased or not estimable if the 
sampling points are not appropriately chosen.

Yuksel et al. (27) provided an empirical study of observed 
dissolution profiles of IR tablets of naproxen sodium 
comparing an analysis of variance (ANOVA) standard 
hypothesis testing approach with model-dependent 
approaches through t-tests and comparing these with the 
f2 calculation. It was restricted to the comparison of a test 
batch with a reference batch. No discussion was given of 
the more general case of making inferences to multiple 
batches from two different populations, which might 

happen in a post-approval change of manufacturing 
process or site. In addition, no discussion was given of 
an equivalence approach in place of hypothesis testing 
where a criterion for similarity would be specified in the 
case of the ANOVA or model-based approaches. The 
conclusions given in the paper cannot be generalized 
beyond the test case discussed. 

Non-Parametric Comparison of Dissolution Curves
Bartoszynski et al. (28) provided a statistically sound 
approach to dissolution profile comparisons based on 
three candidate statistics. These were statistics related 
to (1) the rank-score method as an extension of the 
Mann–Whitney test, (2) an extension of the Kolmogorov–
Smirnov D-statistic comparing three empirical cumulative 
distributions, and (3) an adaptation of the chi-squared 
test. A proximity measure related to a Minkowski metric 
was defined to compare all possible pairs of curves. A 
conventional hypothesis test of equality methodological 
approach formed the basis for drawing inferences in 
all three cases. It was limited to the case of testing 
two batches, test versus reference. No discussion of 
an equivalence approach in which the method would 
accommodate a meaningful difference criterion was 
given, nor is it obvious how one would extend this method 
to the case of multiple batches from two populations. 
The ranking method ignores actual differences so it is also 
conceivable that varying magnitudes of difference would 
be considered different depending on the pattern of the 
data rather than any given practically meaningful overall 
difference criterion.

NORMATIVE REQUIREMENTS FOR A 
DISSOLUTION PROFILE SIMILARITY TEST
Eaton et al. (29) have criticized the approaches discussed 
in the previous section for in vitro dissolution profile 
similarity testing. The authors defined two normative 
requirements (NRs) for a sound statistical methodology 
for testing dissolution profile similarity:

NR1: A specified function of population parameters 
(not involving data or experimental design) should be 
used to define dissolution profile similarity.

NR2: No matter what testing procedure is used, there 
needs to be sufficiently detailed knowledge about 
the power function to allow an assessment of the 
probabilities of Type I and Type II errors.

As indicated by Eaton et al. (29), the f2 statistic and the 
MSD equivalence test fall short of these two NRs. These 
will be discussed further in the next section.
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In addition to the two NRs suggested by Eaton et al., a 
sound statistical testing methodology should also satisfy 
the following additional requirements:

NR3: The parametric definition of similarity should be 
independent of the statistical methodology used to 
test for similarity.

NR4: The test for similarity should make clear the 
inference space for the conclusion. For instance, does 
the conclusion apply to the populations of test and 
reference batches or only to those batches providing 
data for the comparison?

NR5: A minimum confidence level should be specified 
that properly accounts for estimation uncertainty.

In the following sections, we review various published 
methods for dissolution profile similarity testing from 
the perspective of the above set of basic requirements 
for a statistical procedure. We then describe some of 
the differences in motivation between scientific and 
regulatory stakeholders that should be considered in 
designing a statistically appropriate dissolution profile 
similarity approach. Finally we suggest that a Bayesian 
approach to the question of similarity may offer many 
conceptual and practical advantages that will be attractive 
to both scientific and regulatory stakeholders.

DETAILED CRITIQUE OF CURRENT 
APPROACHES TO SIMILARITY TESTING 
OF DISSOLUTION PROFILES
The f2 Similarity Statistic
The f2 similarity statistic, introduced by Moore and Flanner 
(3), was immediately incorporated into an FDA guidance 
(2). It is very simple for scientists to calculate and use. It 
does not consider statistical or modeling details and does 
not require (or take advantage of) any theoretical model 
of profile shape. The f2 statistic has been adopted by 
regulatory bodies worldwide, although implementation 
details and limits in specific guidances differ somewhat. 
Despite its widespread use, it has serious technical 
shortcomings. In addition, it fails to meet the normative 
requirements for an appropriate statistical procedure 
discussed previously. Specific criticisms of the f2 statistic 
are the following:

I.  Current regulatory guidances (2, 5–7, 9, 30, 31) fail to 
define the population characteristic that f2 estimates. 
These guidances provide no underlying statistical 
model that allows f2 to be defined parametrically, thus 
violating NR1. Therefore, it is not possible to construct 
a statistical hypothesis or equivalence test based on 
this statistic. Should one consider the parameter f2

0 

given previously, f2 is a biased estimator and possesses 
a complex and intractable sampling distribution. 
Bootstrapping has been investigated in the literature, 
but the coverage is not nominal and the bias requires 
approximations and corrections to obtain a bootstrap 
interval estimate.

II.  Without a definition of similarity in terms of model 
parameters, the operating characteristics of any 
hypothesis or equivalence test based on the f2 statistic 
cannot be determined, thus violating NR2.

III.  Current regulatory guidances do not state a minimal 
confidence level at which a similarity determination 
based on f2 should be made, as indicated by NR5. The 
recommended approach is based solely on a point 
estimate of f2 (i.e., whether or not the observed f2 
statistic is greater than 50). Thus if the median sampling 
distribution of f2, for a particular comparison, equals 50, 
the Type I error of the determination is 50% (equivalent 
to a decision based on a fair-coin flip). The difficulties 
of developing an equivalence test based on the f2 
statistic are described well by Eaton et al. (29) who 
conclude that “…an analytic description of the sampling 
distribution of f2 seems quite hopeless,” and that “It 
is straightforward to show that f2 underestimates [its 
underlying parameter] and this may adversely affect 
any bootstrap confidence interval/testing argument.”

IV.  Current regulatory guidances provide insufficient 
direction regarding experimental design of the 
comparison trial.

A. Twelve dosage units are required of both test 
and reference, but no justification is given for this 
sample size. None of the regulatory guidances 
state how to proceed if more units of either test or 
reference are available.

B. It is not clear whether these 12 should come 
from single or multiple batches. FDA (2) states that 
the reference should be either the most recent 
manufactured lot prechange or the last two or more 
consecutive lots prechange. FDA (6) states that the 
reference should be three consecutive recent lots, 
prechange. The EMA (9), Japanese (30) and WHO 
(31) guidances give no information on the selection 
of test or reference batches.

C. When multiple batches of either test or reference 
(or both) are available, it is not clear whether to 
“pool” batches into test and reference superbatches 
and conduct a single comparison, or to conduct 
multiple comparisons of all possible combinations 
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of test and reference batches. The first approach 
would seem to require some pooling test, and the 
second approach would seem to demand a multiple 
comparison correction of some kind. None of the 
regulatory guidances address these issues.

D. EMA (9), FDA (2), and WHO (31) state that no 
more than a single time point past 85% dissolution 
should be used for either test or reference batches. 
However, it is not clear whether this requirement 
applies to the observed dissolution mean or to that 
of individual dose units.

E. FDA (7) states the number of time points to be 
used should be a “sufficient number of points.” 
EMA (9), FDA (2), and WHO (31) recommend at least 
three. The Japanese guideline (30) specifies four 
according to a formula. As shown in criticism V of 
this section, the conservatism of the f2 similarity 
requirement depends on the number of time points 
used to calculate the f2 statistic. For immediate-
release products, it may be difficult to obtain more 
than three time points, but many more time points 
can be available for modified- or extended-release 
products.

F. Four of the guidances (2, 7, 9, 31) disallow the 
use of the f2 statistic in cases of excess variation in 
the determination of percent dissolution. Two of 
the guidances (9, 31) state an RSD strictly less than 
20% for the first time point and strictly less than 
10% at later times, whereas FDA (2) allows up to 
and including 20% and 10%, respectively, for the 
corresponding time points. FDA (6) also imposes an 
additional constraint that no difference between 
reference and test means across any of the time 
points can exceed 15%. The guidances do not make 
clear whether the RSD requirement is based on 
intrabatch RSD, interbatch RSD, or some other (e.g., 
total RSD) measure.

V.  As the number of time points included in the 
comparison is increased, the f2 criterion becomes more 
liberal in that larger deviations can be accommodated. 
The f2 similarity region is based on a hypersphere 
having a dimension equal to the number of time points. 
The radius of the sphere increases with the number 
of time points, being 29% larger for five time points 
than for three. This leads to an opportunity to increase 
the likelihood of claiming similarity by increasing the 
number of time points used to calculate the f2 statistic 
or by choosing an excess of early or late time points 
where test and reference percent dissolution may be 

physically constrained to be similar (NR1 violation).

VI.  To use the f2 statistic, the test and reference must 
use exactly the same time points. However, there are 
cases where this requirement may not be met. For 
instance, it is sometimes necessary to make similarity 
comparisons against historical batch release tests or 
early development tests that use a different dissolution 
protocol than that for a newer process. This also may 
be the case for comparisons made using test results 
obtained in different laboratories. Such comparisons 
would require the use of a theoretical model for the 
shape of the profile. EMA (9) mentions briefly the use 
of a Weibull model, and FDA (2) permits the use of a 
model-dependent approach. The other guidances 
provide no explicit provision for use of such a model. 
Thus it is possible that conflicting results could arise 
since regulatory agencies typically demand the use of 
the f2 statistic for comparison purposes.

VII.  Current regulatory guidances avoid the inconvenient 
yet critical considerations of the intended inference 
space for similarity comparisons (NR4 violation). The 
apparent intent of the similarity comparison is to assure 
that units produced in the future by a new (test) process 
can provide equivalent dissolution characteristics to 
those formerly produced by an approved (reference) 
process. However these guidances seem to imply that 
the similarity decision is based on the particular batches 
available. They do not discuss how similarity conclusions 
with respect to the test and reference population of 
batches should be drawn. Drawing inferences about 
the processes (rather than the batches) requires 
consideration of sampling design, relative magnitude 
of intrabatch and interbatch variances, and justification 
of an appropriate hierarchical statistical model. If the 
true objects of comparison are test and reference 
populations or the manufacturing processes overall, 
then avoiding such considerations is unscientific.

VIII.  The f2 statistic does not account for differences 
in variance among the time points. In other words, the 
statistic is “unweighted.” Yet it is commonly observed 
that the variance is larger near 50% dissolution than 
near 0% or 100% dissolution. This raises the concern 
of whether statistical weighting should be incorporated 
into the calculation of the statistic, as would be required 
to provide a proper statistical hypothesis or equivalence 
test. Such concerns beg the question of exactly what is 
meant by similarity.

IX.  The f2 statistic is location invariant. Its value depends 
solely on the observed mean differences between test 
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and reference units at the various time points. There is 
no consideration of the magnitude of these differences 
relative to the overall change in percent dissolution 
over the time interval studied or of the time-order in 
which these differences occur. Thus the f2 statistic is 
more of a distance metric than a profile-shape metric. 
It would not distinguish between non-similarity of the 
test units due to dose dumping from that due to failure 
to deliver the labeled dose at longer times.

X.  The ability of the f2 statistic to signal a difference in 
mean percent dissolution between test and reference 
units may depend critically on the choice of time points 
at which measurements are taken. Because it is based 
on a limited set of discrete time points, it is possible for 
f2 to exceed 50, while the two dissolution profiles are 
not equivalently close enough between two observed 
time points. Clarity in the current guidances is lacking 
on the number and spacing of time points, and their 
dependence on dissolution profile shape of the 
reference.

Multivariate Statistical Distance (MSD) 
Equivalence Test
The switch to use of the MSD test represents a fundamental 
change in the definition of similarity. Whereas the f2 
statistic depends only on mean differences, the MSD 
depends on the pooled variances at each time point 
and the correlations among time points. While the f2 
test of similarity is based on an observed f2, the MSD 
test of similarity is based on the outcome of a formal 
multivariate statistical equivalence test with a specified 
maximum Type I error level (0.05). Despite an apparent 
advantage in relation to known statistical properties, we 
feel the MSD test as implemented in the guidance and 
literature also fails to provide a satisfactory approach to a 
test for similarity. The reasons are summarized as follows:

I.  The decision whether to use f2 or MSD, and thus on 
the fundamental definition of similarity, depends on 
observed data (i.e., sample variances or %CVs). Further, 
the tolerance limit, TL, is a function of the observed 
pooled sample variance, Sp (NR1 violation).

II.  The MSD similarity limit implementation is unclear. 
Whereas the decision limit for the f2 statistic (f2 > 50) is 
provided in the guidances, the MSD limit is not provided 
but must be determined on a case-by-case basis and is 
dependent on differences among reference batches. 
No direction is provided on the amount of historical 
data required or the degree of conservatism to be 
used in setting this limit. A greater interbatch variance 
among reference batches implies a wider acceptance 

limit for MSD. Thus there is no clear understanding of 
the meaning of similarity across products.

III.  The MSD test is not based on a hierarchical model 
that accounts for the relative magnitudes of intrabatch 
and interbatch variance components. Whereas the 
f2 statistic does not distinguish between intrabatch 
and interbatch variance, the decision to switch to the 
MSD test depends on intrabatch variance, and the 
MSD limit itself depends on interbatch variance (of the 
reference formulation). Yet there is no requirement 
that the observed MSD take into account the relative 
magnitudes of these variances. As with the f2 statistic, it 
is not clear whether the conclusion regarding similarity 
is meant to apply to the test and reference populations 
of batches or merely to the batches used to conduct 
the MSD equivalence test (NR4 violation).

IV.  The MSD metric is not a measure of profile shape 
similarity. It is essentially a ratio of squared dissolution 
differences divided by their pooled measurement 
variances. Processes that exhibit larger variances 
can accommodate greater mean differences for a 
given fixed value of the MSD metric. For this reason, 
the decision criterion for the MSD test involves the 
construction of a multivariate confidence region. The 
complexity of the MSD test requires greater statistical 
expertise and specialized statistical software. The need 
to use the MSD approach thus leads to a considerable 
“culture shock” for the dissolution scientists who may 
not have anticipated the need for statistical support 
prior to collection of the data.

V.  Current regulatory guidances do not mention the 
construction of a multivariate confidence region test 
based on the MSD. Berger and Hsu (32) have shown that 
this test has a nominal size, given the usual assumption 
of normality. However, literature examples have used 
an inversion of Hotelling’s T 2 to obtain a test based on 
an estimated confidence region. Such a test can be very 
conservative and increasingly so as the number of test 
points (or dimensions) increases as shown by Eaton et 
al. (29).

VI.  Multivariate confidence region estimates are not 
unique. While the minimum coverage of the MSD-based 
multivariate confidence region (0.90) is specified (2), 
other aspects of the region are not defined. Confidence 
regions for a given coverage can take on arbitrary shape 
(hyper-elliptical, hyper-rectangular, one- or two-sided 
in some or all dimensions, etc.) and, in general, will not 
conform to the shape of the defined similarity region. 
The location and extent of the confidence region 



20 Dissolution Technologies | FEBRUARY 2016

extrema thus depend on these shape choices and the 
way in which risk is allocated. The MSD equivalence test 
requires that the entire confidence region (including 
extrema) be contained within whatever similarity 
region is determined. Thus the MSD equivalence test 
can be made more or less conservative, depending 
on the shape choices made by those conducting and 
reporting the equivalence test results.

VII.  Literature implementations of the MSD test have 
been controversial. For instance, the implementations 
reported by Tsong et al. (13) and Sathe et al. (33) 
illustrate the subjective impact of similarity and 
confidence region shape choices. They illustrate 
rectangular similarity neighborhoods, whereas the f2 
statistic utilizes a spherical similarity neighborhood. 
Their stated measure of similarity (the pivotal MSD 
statistic) is independent of model parameters and thus 
seems to violate NR1. The implementation reported by 
Saranadasa and Krishnamoorthy (15) assumes that the 
curve shapes of test and reference are parallel, which 
is likely never exactly true and therefore cannot be a 
consistently tenable approximation.

SCIENTIFIC AND QUALITY STAKEHOLDER 
PERSPECTIVES 
Approval of a submitted request to change an existing 
medical intervention product involves scientific and 
quality considerations related to risk. One could pose the 
following questions in this regard:

Scientific Perspective: What is the probability that this 
particular change is unsafe or ineffective?

Quality Perspective: What is the probability (over 
many submissions) that ineffective or unsafe changes 
will be approved?

The former would be a primary concern to the sponsor 
of the change, whereas the latter would be a primary 
concern to the regulator. Both questions can be framed 
in terms of probabilities, although the natures of these 
probabilities are very different.

The scientific perspective demands development of a 
body of knowledge—a knowledge base specific to the 
test and reference processes being compared. Such 
knowledge may come from established theoretical or 
statistical models, appropriately designed experiments, 
relevant historical development experience, and the 
prior experience of subject matter experts, but in 
general contains substantial uncertainty. Good scientific 
decision-making utilizes the entire body of accumulated 

knowledge to make an informed decision about the 
proposed change in the face of this uncertainty. This is 
an inevitable feature of such comparisons and calls for an 
appropriate risk assessment methodology that provides a 
clear characterization of the uncertainty contained in the 
knowledge base.

The quality perspective is more concerned with the 
calibration of risk decision tools that are used across many 
sponsors and many processes and is the basis for NR1 
described earlier. We submit that the maintenance of a 
high level of overall quality of biopharmaceutical products 
and their impact on public health over time requires 
decision-making tools whose operating characteristics 
are documented (as indicated by NR2). This is a policy 
consideration that deserves wider recognition and 
discussion. 

Clearly, both perspectives are important to sponsors 
and regulators alike. If powerful and informative 
decision-making tools are not utilized, or the operating 
characteristics of the statistical tools are not well 
documented and understood, this could lead to 
inconsistencies in regulatory risk management and 
quality level across sponsors and processes, especially 
if only the scientific concerns are addressed. On the 
other hand, focusing solely on quality concerns may 
not fully utilize the available knowledge resulting in an 
unknown performance of acceptable decision-making. 
In considering improved tools for the process of decision-
making, the impact on both scientific and quality risk 
must be considered by both sponsors and regulators.

Below, we discuss the possibility of Bayesian approaches 
to in vitro dissolution similarity comparisons which we 
feel offer many benefits and improvements from both 
scientific and quality perspectives as well as satisfying the 
normative requirements listed in the introduction.

A BAYESIAN PERSPECTIVE TO THE IN VITRO 
DISSOLUTION COMPARISON PROBLEM
Traditional statistical approaches to similarity and 
equivalence testing involve hypothesis tests or confidence-
region arguments based on Type I level or repeated 
sampling coverage arguments. These methodologies 
involve deductive reasoning (i.e., inferring the probability 
of observed data, given a hypothesis). The probabilities 
(p-values, confidence coefficients) associated with such 
approaches are attractive from a quality perspective 
because they are sometimes (but not always) nominal 
values equal to the probability coefficients used in the 
theoretical derivation of the method. However, these 
probabilities are more concerned with the long-term 
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performance of a given decision tool than with the likely 
values of the uncertain parameters that are the subject of 
a given scientific investigation.

Goodman (34, 35) has argued that measuring the 
strength of scientific evidence requires both deductive 
and inductive reasoning (i.e., inferring the probability of a 
hypothesis, given observed data) and that this is facilitated 
by a Bayesian perspective. According to Bayes’ rule, all 
inferences about the values of uncertain parameters are 
obtained by combining information from data with prior 
knowledge to obtain a multivariate posterior distribution 
of model parameters. Since NR1 states that similarity 
be defined parametrically, a Bayesian approach to in 
vitro dissolution comparisons seems most appropriate. 
Sometimes there is a close relationship between 
frequentist and Bayesian probabilities, but the events 
associated with these two probabilities are different. 
More often, frequentist and Bayesian probabilities will 
be different. We feel that Bayesian probabilities offer the 
following advantages as a profile comparison tool:

•	 Unlike confidence region methods, the integrated 
posterior corresponds exactly to the region of 
similarity. There is no conservatism.

•	 A Bayesian approach makes possible an intuitive 
statement such as “The probability of similarity is 
p.” Such a probability statement takes into account 
the uncertainty of the unknown model parameters. 
In contrast, the results of a frequentist approach to 
inference through a confidence interval or hypothesis 
test cannot be interpreted in the same intuitive 
manner. Frequentist inference may also require 
the use of large-sample asymptotics, which further 
complicates the interpretation of the resulting 
inferential statements.

•	 Using modern Bayesian sampling approaches, it is 
possible to handle in an exact way (i.e., estimation 
accuracy limited only by the size of the posterior 
sample drawn) complex situations, which require 
conservative, asymptotic, or large-sample 
approximations using traditional approaches. This 
includes the following types of models that can be 
usefully employed in profile comparisons:

 �Multivariate.

 �Nonlinear, including theoretical models of 
dissolution profile shape such as Weibull.

 �Hierarchical models that include both intrabatch 
and interbatch variance.

 � “Mixed” models in which some parameters are 
considered fixed and others random.

 �Predictive models in which we are concerned with 
behavior of future batches.

 �Missing data.

•	 It is straightforward to calculate the posterior 
distribution of any fixed or random function of 
these parameters (such as a given similarity metric). 
This circumvents the need to derive a sampling 
distribution for such functions.

•	 The availability of modern Bayesian methods makes 
it possible to calculate various probabilities by simple 
counting. This circumvents the need to analytically or 
numerically integrate the distributions.

•	 Bayesian computations can be efficiently carried out 
by a number of freely available software such as R 
(36), WinBUGS (37), Stan (38), and JAGS (39). WinBUGS 
in particular represents over 20 years of experience by 
thousands of users worldwide and is a very mature 
and stable computing environment. A plethora of 
computing examples are available with the software 
and in many text books, including the kind of models 
appropriate for dissolution similarity comparisons.

•	 The Bayesian approach permits prior knowledge 
to be incorporated into the decision process in a 
quantitative, objective way. When there is no relevant 
prior knowledge available, or where the data must 
“stand on its own,” non-informative or vague priors 
are well known and their impact on the decision can 
be determined. The incorporation of prior knowledge 
can be of great utility in community decision-making.

•	 As noted above, the sampling distribution of f2 is 
intractable, which inhibits development of a statistical 
equivalence test based on f2. However, it is trivial 
to obtain the posterior distribution of f2 (given 
an appropriate definition of f2 in terms of model 
parameters). Thus the Bayesian approach can provide 
a link to the established metric.

We see two principal barriers to taking a Bayesian 
approach. First, while the results of Bayesian analyses 
will be intuitive and understandable to scientists, 
statisticians, and regulators alike, the use of Bayesian 
technology is probably unfamiliar to many. Consequently, 
statistical support is recommended. Certain aspects such 
as model parameterization, prior elicitation and choice, 
and convergence verification require care. However, 
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our experiences with Bayesian methodology have been 
positive. We feel this barrier can be overcome with 
training. Second, mindful of the quality perspective, there 
is a need to quantify the risks associated with a decision 
rule, particularly when an analytical power calculation 
is not possible. This can be computationally intensive, 
but in principle, it is straightforward to accomplish using 
a Bayesian simulation approach. Such methodology is 
becoming more commonplace, and we see this as part 
of best statistical practice. For these reasons, we believe 
Bayesian methodology has the potential of overcoming 
many of the issues with f2 and MSD while maintaining a 
link to established criteria. Such methodologies are the 
subject of a separate article by the authors of this review 
(40). Other papers expanding on the topic are under 
discussion. 
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