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BACKGROUND

L  ymph or lymphatic fluid is a biological fluid derived 
from the interstitial fluid of parenchymal cells 
throughout the body. The hydrostatic pressure within 

the capillary beds results in molecule ultrafiltration from 
arterioles, which drives some blood components along 
with proteins into the interstitial space (1). Approximately 
90% of the 20–30 liters of the plasma that leaks into the 
interstitium returns to blood through the capillary venous 
end, and the remaining fluid is drained back along with 
other molecules from the extracellular space to the 
circulation by the lymphatic system in the form of lymph 
(2, 3). Lymph also carries the invading pathogens and 
immune cells into lymph nodes where proper immune 
responses can be mounted (2, 4). Thus, lymph serves in 
regulating and modulating immune response, thereby 
affecting some important immunological processes like 
immune tolerance in the body. Furthermore, lymph has 
two other main functions – maintaining fluid homeostasis 
and delivering some nutrients and fat absorption products 
from the intestine to the general circulation (5).     

Lymph Flow
From the extracellular space, lymph first enters 
blind-ended lymphatic capillaries, termed the “initial 

lymphatics.” Next, it drains into the lymphatic collecting 
vessels, then passes through at least one but usually 
several lymph nodes distributed throughout the body. 
Collecting vessels merge into larger trunks that empty 
into lymphatic ducts. Finally, the ducts return the lymph 
back into the venous circulation at the junction of the 
jugular and subclavian veins (Fig. 1), completing the circuit 
of fluid transport (6, 7).

Dietary lipids and highly lipophilic drugs are usually 
packaged into lipoprotein vesicles (chylomicrons) in the 
cytoplasm of the enterocytes before being up taken by 
the lymphatic capillaries (8). Triglycerides of ingested lipids 
are usually hydrolyzed by lipases into monoglycerides 
and fatty acids prior to reaching the duodenum. When 
hydrolysis products enter the enterocytes, long chain 
fatty acids (C ≥ 12) and monoglycerides get re-esterified 
in the endoplasmic reticulum and are assembled into 
chylomicrons, which then migrate to the Golgi apparatus 
before being exocytosized into intestinal lymphatics (9, 
10). 

Lymph flow rate differs among species, within species, 
and within subjects (11, 12). Ultimately, it is a function of 
the blood flow through an organ and the proportion of the 
blood that leaks from the capillaries into the lymphatics 
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(12). Pre-nodal (afferent) lymph flow collected from 
fasted-state rat mesentery is 15 μL/h, and post-nodal 
(efferent) flow of the mesenteric duct is approximately 1.3 
mL/h (13). The rat lymph flow represents 1.1% of plasma 
flow (12). In humans, the afferent lymph flow is estimated 
to be twice that of the efferent, i.e., 8 and 4 L/day, 
respectively (14). This is attributed to the reabsorption 
that occurs at the lymph nodes through special blood 
vessels across. Lymph components can cross into either 
direction, thus changing the post-nodal lymph rate and 
composition (3, 15, 16).

Lymph Composition
Reported studies on lymph composition date back 
to the late 1920s. In 1932, Heim tested thoracic and 
cervical lymph of dogs for protein, non-protein nitrogen, 
urea, uric acid, creatinine, sugar, amino acids, chlorides, 
calcium, and phosphorus (17). After comparing his 
results with previously reported data, Heim concluded 
that the chemical composition of lymph overlaps with 

that of the plasma. The exception was for protein and 
its related substances (phosphorous and calcium), which 
were higher in plasma than in lymph (17). In a study that 
investigated rat ovarian lymph, the total concentration 
of protein was estimated to be 53% of the plasma (12). 
Yet, similar studies in other species have reported higher 
percentages of total protein concentration in lymph 
compared to plasma, with the highest level recorded in 
sheep as 90% (18, 19). 

Similarly in humans, the lymph composition was first 
believed to coincide with that of the plasma as the 
former was considered a filtrate of the latter. Challenges 
associated with cannulating lymphatic vessels with 
collecting only little amounts of lymph for analysis 
and the low sensitivity and resolution of the analytical 
instruments were barriers to a thorough analysis of lymph 
(3, 17). Nevertheless, lymph biology has progressed over 
the years and these hurdles have been resolved. It is now 
known that pre-nodal lymph has a similar make up of salts, 
plasma proteins, sugars, and lymphocytes as interstitial 

Figure 1. Lymphatic system through the body (left). The vessels part of this system starts with the initial lymphatic capillaries that are 
interlaced with arterioles and venules, then drain into lymphatic collectors and trunks before they empty into the right lymphatic and thoracic 
ducts, which in turn joins the venous circulation at the junction between the jugular and subclavian veins on both body sides (right).
Illustrations used under a standard license from depositphotos. ©VectorMine (Eduards Kantāns).
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fluid. However, the post-nodal lymphatic fluid is more 
concentrated, having a higher count of lymphocytes and 
a two-fold higher concentration of the plasma protein (2, 
15, 20). 

Proteomic analysis revealed that the proteins essential to 
osmotic pressure maintenance, namely albumin, α1, α2, 
β globulins, and fibrinogen, in addition to the coagulation 
factors are higher in plasma than in lymph (21–24). 
Nevertheless, the lymph is richer in extracellular matrix 
proteins and intracellular proteins resulting from cellular 
metabolism, i.e., those released from apoptosis and 
lipoproteins (25–29). To date, more than 2000 proteins 
have been identified through protein mapping of lymph 
derived from various species including human (30). 
Mapping was mostly done on peripheral subcutaneous 
and mesenteric pre-nodal lymph; therefore, the full 
lymph profile is not yet completed (30). 

The cellular component averages 12,000 ± 5200 cells/μL 
in rat mesenteric lymph (13). In human peripheral lymph, 
there are 162 cells per mm3 , with lymphocytes accounting 
for up to 96% of these cells (31). Low concentration of 
these cells does not appear to affect the bulk properties 
of the lymph (2). 

Simulated Lymphatic Fluid
In the field of pharmaceutical sciences, lymph-targeted 
drug delivery can open a new era to medicines and 
vaccination (5). This approach has relevant therapeutic 
and pharmacokinetic benefits (32). The intestinal 
lymphatic transport, in particular, can demonstrate 
various advantages over portal blood absorption 
following oral administration of drugs (33). Intestinal 
lymphatic absorption can aid drugs by shunting away 
from first pass hepatic metabolism, thus imparting higher 
bioavailability. Thus, drugs with a high extraction ratio are 
the most ideal candidates to be delivered via lymphatic 
fluid. Additionally, intestinal lymphatic delivery can boost 
efficacy of chemotherapeutic and immunomodulatory 
agents, with the lymphatic system being primarily involved 
in cancer metastasis and immune modulation (6, 10, 
33). Examples of lymphotropic drugs include carvedilol, 
halofantrine, praziquantel, docetaxel, valsartan, among 
others (34–40).

The importance of standardized physiologically relevant 
simulated fluids for use in biopharmaceutic and dissolution 
studies have been highlighted in multiple articles and 
reviews; however, there is no mention of standardized 
simulated lymphatic fluid in these publications (41–43). 
Standardization of a simulated clinically or physiologically 
relevant lymphatic fluid media would be an important and 
novel contribution to fill the current void in this emerging 

area of drug and formulation development.

Simulated lymphatic fluid can be composed of the 
components listed in Table 1 (2, 41). The composition 
of salts in the proposed fluid is similar to that of 
the extracellular fluid (41). Protein composition is 
approximated to be less than 0.01 g/mL in pre-nodal 
lymph (2). As albumin is a main protein that affects drug 
binding and pharmacokinetics, it can be added into 
the simulated lymphatic fluid. It composes nearly 60% 
of the total protein in lymph and would be used in the 
concentration of less than 0.006 g/mL (12, 21, 44).

Lymph derived from the intestine is termed “chyle.” It 
has a rich protein content (0.02–0.06 g/mL) and a milky 
color, unlike the clear lymph from other parts of the 
body (45, 46). The white color is attributed to the fact 
that this portion of lymph is rich in chylomicrons (47, 48). 
Chylomicrons are mainly composed of triglycerides as 
well as phospholipids, proteins, and cholesterol (49).

Intralipid (Fresenius Kabi Canada Ltd, Toronto) 20% 
is a commercial product used for providing fats and 
calories to patients in need of total parenteral nutrition 
(50). The components of Intralipid are listed in Table 
2. Interestingly, the components are comparable to 
those of endogenous chylomicrons, which are used 
as a main component to simulate intestinal lymphatic 
fluid (50, 51). The size of globules lies within the range 
of the chylomicron’s; furthermore, it contains the main 
components that constitute chylomicrons and chiefly 
affect their drug uptake. The acids present in soybean oil, 
from which Intralipid is prepared, resemble the typical 

Table 1. Concentration of Various Constituents in Lymphatic Fluid 
(2, 41) 

Component General Simulated 
Lymphatic Fluid 

(mM)

Intestinal Simulated 
Lymphatic Fluid or 

Chyle (mM)

HCO3- 4.2 4.2

K+ 5 5

Cl- 148.8 148.8

Na+ 142 142

Ca+ 2.5 2.5

Mg+ 1.5 1.5

HPO4
-2 1 1

SO4
-2 0.5 0.5

Tris(hydroxymethyl) 
aminomethane 50 50

Hydrochloric acid 45 45

Proteins < 0.01 g/mL 0.02–0.06 g/mL

Triglyceride 
fat globules 

(chylomicrons)
- > 0.01 g/mL
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acids packaged into the chylomicrons (52, 53). As a 
consequence, the simulated chyle would be similar to the 
previously described lymphatic fluid, with a slightly higher 
albumin level (0.012–0.036 g/mL). As a surrogate for the 
chylomicron component of lymphatic fluid, Intralipid  has 
a triglyceride concentration of more than 0.01 g/mL (2, 
50). 

MATERIALS AND METHODS
Preparation of Simulated Lymphatic Fluid
For pharmaceutical compounding and preparation 
of simulated lymphatic fluid, reagents in Table 3 are 
used. The method of preparation for both general and 
intestinal lymphatic fluid involves successive addition of 
the reagents in the specified amounts after each being 
fully dissolved in 700 mL water, before adjusting to the 
required pH with 1 M HCl and completing the volume to 
1 L (41). If stored at 2–8 °C, simulated general lymphatic 
fluid is stable for more than 2 months, whereas simulated 
intestinal lymphatic fluid requires gentle shaking before 
use if stored under similar conditions and for the same 
period of time.    

Analysis of Simulated Lymphatic Fluids
The lymphatic fluids (prepared and a commercially 
obtained product) were analyzed to compare their 
composition and properties with the reported data 
for biological lymph. Variables used for comparison of 
the fluids included pH, density, chemical content, and 
solubility.

The pH of the fluids was measured using a Fischer 
Scientific XL20 pH/conductivity meter.

The density of 80 mL-samples of each fluid were analyzed 
using a Mettler Toledo XPR/XSR-Ana density kit at 25 ± 
0.2 °C. The specified amount was placed in the beaker, 
the sinker was completely immersed, and after ensuring 
no bubbles adhered to the immersed sinker, the draft 
shield was closed. After the balance reached stability, the 
obtained readings were recorded. 

Medica’s EasyRA analyzer was used to investigate the 
lymphatic fluids for chemical content, i.e., potassium 

(K+), sodium (Na+), calcium (Ca++), magnesium (Mg++), 
phosphorus (P2-), iron (Fe3+), and chloride (Cl-) ions, as well 
as total carbon dioxide (CO2), total protein, albumin, and 
triglyceride concentration. After calibration and a system 
check, cleaning the probe and the ISE (ion selective 
electrode), calibrated proper reagents were placed in 
sample holder with the blank (HPLC grade water) and 100 
or 2000 µL samples of the simulated lymphatic fluids (or 
dilutions of the fluids). The required tests were processed 
and the acquired results were noted. 

Solubility of a lymphotropic drug (rifampicin), a zwitterion 
with pKa 1.7 for the 4-hydroxy and 7.9 for the 3-piperazine 
nitrogen, was measured using the shake-flask method 
adopted from the literature in the prepared simulated 
lymphatic fluids and the commercially obtained artificial 
fluid.

Reagent CAS number
Amount for 1 
L of Simulated 

Lymphatic Fluid

Sodium chloride 7647-14-5 8.035 g

Sodium bicarbonate 144-55-8 0.355 g

Potassium chloride 7447-40-7 0.225 g

Potassium phosphate 
dibasic 7758-11-4 0.231 g

Magnesium chloride 
hexahydrate 7791-18-6 0.311 g

1 M Hydrochloric acid 7647-01-0 39 mL

Calcium chloride dihydrate 10035-04-8 0.292 g

Sodium sulfate 7757-82-6 0.072 g

Tri(hydroxymethyl)
aminomethane 7283-04-7 6.118 g

Protein (human serum 
albumin) 70024-90-7 40 g

Intralipids 68890-65-3 100 mL

RESULTS AND DISCUSSION 
When compared with a commercial artificial lymphatic 
fluid (Biochemazone, batch no. BZ-0421A), the prepared 
simulated lymphatic fluids more accurately resembled 
the composition of biological lymphatic fluid (2, 52). The 
data are presented in Table 4 for comparison. 

The density values of both commercial and laboratory-
prepared fluids were within the range reported for 
biological lymphatic fluid. However, the pH of the 
commercial fluid (6.98) did not lie within the physiological 
range reported for lymph collected from the thoracic 
duct (7.08–7.40) (55). Despite being close to the reported 
range, this pH could pose a hurdle to using commercial 
fluid for in-vitro drug studies in which the conditions are 

*Acids in soybean oil include 52% linoleic and 22% oleic in addition palmitic 
(13%), linolenic (8%), stearic (4%), myristic (< 1%), and other acids (1%).

Table 2. Composition of Intralipid and Endogenous Chylomicrons 

Chylomicrons Intralipid

Size 75–1000 nm (1 µ) 0.5 µ

Components Triglycerides (84%)
Phospholipidis (7%)

Protein (2%)
Cholesterol (7%)

Cholesterol esters (2%)

Soybean oil* (20 g)
Egg phospholipids (1.2 g)

Glycerol (2.2 g)
q.s water for injection (100 

mL)

Table 3. Reagents for Preparing Simulated Lymphatic Fluid 
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usually set to mimic those in vivo. 

The concentration of Na+ in all fluids was less than 
the reported value in the biological fluid. The lowest 
concentration was recorded for in the artificial fluid, 
whereas the simulated lymphatic fluid values were 
closer to the reported physiological value. A similar result 
was determined with Ca++ concentration. The artificial 
lymphatic fluid had no Cl- and very high concentration of 
K+ and Mg++ whereas the values of both in the prepared 
simulated lymphatic fluids were within an acceptable 
range compared to biological fluid. All fluids contained 
a higher concentration of  P2- than  the reported 
physiological value; the highest was the artificial fluid 
by almost 18-fold, and the simulated fluids were higher 
by approximately 2 and 3 fold for the simulated general 
and intestinal fluids, respectively. A negligible amount of 
iron was detected in the simulated intestinal lymphatic 
fluid, stemming from the reagents and the Intralipid used 
to prepare the fluid. The artificial fluid contained a high 
concentration of CO2, unlike the others examined that 
had no CO2. 

All essential amino acids and serum proteins were 
present in the artificial lymphatic fluid with a total protein 
concentration of 0.004 g/mL. Albumin concentration 
was 0.002 g/mL, which coincides with the level of the 
albumin present in the general biological lymphatic fluid. 
The prepared simulated fluids only contained the albumin 

level known to be in the general and intestinal lymph (2). 
Usually, acidic drug binding in particular can be affected 
by albumin concentration, thus having an accurate 
representation of protein concentration in simulated 
lymphatic fluid is prudent. The presence of other protein 
moieties in the artificial commercial fluid, although at 
low concentrations, remains to be determined. The 
total protein in the simulated intestinal lymphatic fluid 
indicated that there are other proteins besides albumin. 
That additional protein was traced back to the soy protein 
in the soybean oil in Intralipid (Table 2). 

Triglycerides were found in both the artificial and 
prepared simulated fluids in  different amounts. The 
artificial fluid had 0.0009 g/mL triglycerides, whereas the 
simulated general fluid was developed deliberately to 
have none and the simulated intestinal fluid contained 
an amount within the stated range of the fat component 
found mainly in the intestinal lymph (> 1%) (2). The lipids 
used in the simulated intestinal fluid resemble those 
incorporated into the chylomicrons and transported 
through the intestinal lymph, as outlined earlier. 

Solubility of rifampicin (pKa 1.7 and 7.9) was 2.49 mg/
mL in the artificial lymphatic fluid and 2.62 and 3.00 
mg/mL in the prepared simulated general and intestinal 
lymphatic fluids, respectively (56). The drug solubility in 
the artificial and simulated general fluids was nearly the 
same. Yet, optimal results were encountered with the 

Table 4. Comparison of Prepared Simulated Lymphatic Fluids, Commercial Artificial Fluid, and Biological Fluid 
Property or 
Component

Commercial Artificial 
Lymphatic Fluid*

Simulated General 
Lymphatic Fluid

Simulated Intestinal 
Lymphatic Fluid

Biological 
Lymphatic Fluid (2, 52)

pH 6.98 7.4 7.4 7.08–7.4

Density 1.007 g/mL 1.006 g/mL 1.005 g/mL 1.005–1.016 g/mL

Na+ 97.3 mM 135.7 mM 135.7 mM 142 mM

K+ 43.5 mM 5.23 mM 5.23 mM 5 mM

Cl- _ 117.4 mM 117.4 mM 148.8 mM

Ca+ 0.91 mM 2.51 mM 2.51 mM 2.5 mM

Mg+ 3.65 mM 1.45 mM 1.45 mM 1.5 mM

P2- 6.02 mM 1.06 mM 1.06 mM 1 mM (phosphate)
0.32 mM (phosphorus)

Fe3+ - - 0.007 mM -

CO2 48.6 mM - - -

Albumin 0.002 g/mL 0.005 g/mL 0.021 g/mL ≤ 0.0054 g/mL for general lymphatic 
fluid

0.012–0.036 g/mL for intestinal 
lymphatic fluid

Total proteins 0.004 g/mL 0.005 g/mL 0.04 g/mL < 0.01 g/mL for general lymphatic 
fluid

0.02–0.06 g/mL for intestinal 
lymphatic fluid 

Triglycerides 0.0009 g/mL - 0.03 g/mL > 0.01 g/mL

*Artificial lymphatic fluid was purchased from Biochemazone, Waterloo, Canada (Batch no. BZ-0421A). Dash (-) indicates not detected.
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simulated intestinal fluid, which might be attributed to 
higher protein and triglyceride content in the simulated 
intestinal fluid compared to the other two fluids. This 
result demonstrates that the solubility of a compound can 
vary in simulated and artificial lymphatic fluids, which is 
essential when considering pharmaceutical, biochemical, 
or biological assays using these fluids. Solubility is also 
important for determining the dissolution profile of 
lymphotropic drugs and formulations. 

CONCLUSIONS 
Lymph-targeted drug delivery can open a new era for 
development of medicines and vaccines. Further study 
of lymphatic delivery of molecules is an important 
aspect of pharmaceutical research and development. 
Understanding and standardization of simulated 
lymphatic fluid and its relevance must be considered for 
optimal drug development research processes. This study  
reviewed and analyzed simulated general and intestinal 
lymphatic fluids that proved to be closer in makeup to 
biological fluid than a commercial artificial lymphatic 
fluid. These results are a step towards filling the current 
need for a standardized simulated lymphatic fluid in 
pharmaceutical investigations.
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