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Introduction

ince the introduction of the f, metricin

1994 and its subsequent inclusion in

various guidances, the use of the f, metric

for dissolution profile comparison has

become commonplacein the industry.Other
metrics have been considered and compared with
f, (1).The f, metric has been studied extensively for
its statistical attributes (2),and the shortcomings of
this metric have been pointed out (3). However,
most of the literature regarding dissolution profile
comparison has focused on the regulatory applica-
tions of these metrics.For the pharmaceutical
formulator, the benéefit of dissolution profile
comparison lies in the ability to accurately distin-
guish between formulations.During development,
the formulator has to evaluate the effect of various
formulation and process variables on the dissolu-
tion profile.The effect of these variables on dissolu-
tion is difficult to determine by inspection, so the
dissolution metric potentially could become a valu-
able tool for this purpose. However, the suitability of
f, and other metrics as response variables in statisti-
cally designed experiments has not been consid-
ered thoroughly.

An ideal response variable should provide a
reproducible and objective means of assessing the
effect of changing the controlled variable levels.In
addition, the response variable should have statis-
tical properties that permit it to be modeled appro-
priately by the empirical functions normally
associated with statistically designed experiments.
If the metrics have appropriate statistical proper-
ties, it will be possible to estimate the model coeffi-
cients without bias. If they do not,some of the
model terms will not reflect the cause and effect
relationships between the controlled variables and
reponses essential to efficient product develop-
ment.Indeed, research conducted at Shire Labora-
tories, Inc. (SLI) using small factorial designs (4-8
design points) has shown that f; and f, behave
differently when used as response variables. Often,
significant factors and interactions for the best-fit
mathematical models of the two metricsin the
same experiment are quite different, and R2 values
and lack-offit statistics vary widely between them.
Due to the small size of the experiments run at SLI
theimportance of these observed differences

cannot be studied thoroughly.

Therefore, itis the object of this paper to investi-
gate the use of f; and f, as response variablesin a
larger statistically designed experiment.The signifi-
cant factors and interactions as well as the mathe-
matical models developed from the design will be
compared. Mathematical models derived for both
metrics will be compared and analyzed for robust-
ness and precision by examining f,, lack of fit,
prediction accuracy,and residuals.

Experimental

A 30 run D-optimal experimental design was
conducted at Colorcon,Inc.to evaluate the effect of
various factors on the dissolution profile of Sure-
lease® coated pellets (4).The experimental design
considered the effects of Inlet Air Temperature,
Atomizing Air Pressure, Spray Rate,and Coating
Dispersion Solids Content.In order to compare thef;,
and f, metrics as response variables, the original D-
optimal design was broken into a nearly complete 4
factor 2 level full factorial design with two center
points,seeTable 1 (page 14) for the factorial experi-
mental design.The remaining 12 experiments from
the D-optimal design were used to check the
accuracy of the model developed from the full
factorial design.

The experiment was designed and conducted by
Colorcon personnel.The original purpose was to
study the effect of the variables tested on the curing
properties of Surelease®. This work was presented in
aposter at the AAPS Annual meetingin 1999.In
order to generate f; and f, data for this article a
“target” profile was generated to serve as the refer-
ence profile.

In formulation development of new controlled
release dosage forms,animaginary“target”profile is
frequently utilized to help direct the formulation
effort.This target profile often shifts as the project
progresses and more is learned about the absorp-
tion of the compound from in vivo studies in animals
or humans.In development of generic controlled
release (orimmediate release) products the inno-
vator product serves as the reference profile.In this
experiment the reference profile remained constant.
Dissolution profiles from each experimental run
served as the test profilein thef; and f, calculations.
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The experimental design was analyzed using
Statgraphics software. Significant factors and inter-
actions were determined by analysis of variance
(ANOVA). Mathematical models were derived from
the significant factors and interactions and tested
for lack of fit,and r2.To avoid overfitting the data,
the models were kept to as few terms as possible
while keeping an acceptable goodness of fit. The
residuals were examined for any abnormalities in
the model predictions and fit.

Results and Discussion

The maximum order effect considered in
analyzing the design and developing the model
was 2nd order.The higher order effects were
confounded because of the missing data from run
24.Using the higher order effects to estimate the
error,an analysis of variance was conducted to
determine which main effects and 2 factor interac-
tions were significant.Results from the ANOVA for
both f; and f, are presented in Table 2 (on page 16).

The ANOVA indicated that both f; and f; predict
the same significant main effect, Spray Rate,and
interaction, Spray Rate with % Solids.Therefore the
model for both response variables consists of three
terms:

*Spray Rate,

*% Solids and the

«interaction Spray Rate*% Solids.

Dissolution Fit Factors ... continued

For f; the equationis:
f; =46.9 - 1.4*SprayRate - 2.5*%Solids +
0.1*SprayRate*%Solids

For f2 the equation is:

f,=22.9+ 1.3*SprayRate + 2.6*%Solids -

0.1*SprayRate*%Solids.

The lack-of-fit for both response variables was not
significant.The r2 of the f; model was 0.56, while the
r2 of the f, model was 0.63.These r2 values are low
because there are only 3 significant terms in the
model to describe 17 data points.

Inspection of Table 2 reveals that both response
variables rank ordered the main effects similarly;
however,the rank order correlation was lost when
considering interactions. Interaction AB is border-
line significant in the analysis with f;,and may need
to be considered in the model, but AB is not signifi-
cantwhenf, is the response variable.The difference
in prediction of significant interactions by the two
response variables is illustrated in Figures 1 and 2.

Close examination of the interaction plots indi-
cates that the two response variables are affected
by interactions differently. Particularly interesting
interactions are BCand CD.In Figure 1BCand CD are
parallel,indicating virtually no interaction between
the factors, but in Figure 2 it is clear there is a slight
interaction.This is also reflected in the probabilities
from the ANOVA in Table 2.While there was no

Table 1. Experimental Design

TestRun# Inlet(°C) Spray Rate Atomization Solids Response Response
(g/min) Air(Bar) Content (%) (f1) (f2)
1 50 15 3 10 24 47
2 50 15 1 10 14 60
4 70 45 1 25 42 38
5 70 45 1 10 13 61
6 50 45 1 25 56 32
10 70 15 1 10 16 55
1 50 15 3 25 12 62
13 60 30 2 17.5 8 72
14 70 45 3 25 21 52
15 70 15 3 10 26 47
16 70 15 3 25 10 64
17 70 15 1 25 3 88
18 50 45 3 25 929 20
22 60 30 2 17.5 13 61
24 50 45 3 10 * *
25 70 45 3 10 9 69
28 50 15 1 25 10 65
29 50 45 1 10 21 52

+indicates test conditions inadequate to produce product.
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Table 2. ANOVA Probabilities for f1 and f2

Table 3. ANOVA Probabilities for log f,

Source Probability,f1 Probability, f2 Source Probability, log f1
A:Inlet 0.11 0.31 A:lnlet 0.33
B:Spray Rate 0.02 0.049 B:Spray Rate 0.053
C:Atm. Air 0.21 0.37 C:Atm. Air 0.42
D:Solids 0.40 0.79 D:Solids 0.82
AB 0.053 0.16 AB 0.23
AC 0.13 0.35 AC 0.43
AD 0.69 0.90 AD 0.84
BC 0.96 0.20 BC 0.22
BD 0.02 0.009 BD 0.01
@) 0.98 0.65 @b 0.69

difference in the significant factors and interactions
in this example, it is clear that had the standard error
been smaller,from tighter data or replication of the
design, the two response variables, f; and f,, would
have predicted different significant interactions
even though they are both simple measures of the
distance between two curves.

An important clue to the underlying differences
between the models for the response variables is
revealed by residuals analysis.The residuals
(observed minus predicted values) were graphed
versus various parameters such as time sequence,
individual factors, and the predicted value to assist
in visualization of trends that indicate a potential
problem with the model.Of particular interest is
the residuals versus predicted response graph for
both response variables,shown in Figures 3 and 4
(page 17).

In Figure 3 the funnel shape of the residuals indi-
cates that the prediction erroris not constant,i.e.the
error increases with increasing values of f1.This
feature combined with a slight curvilinear trend in
the residuals of Figure 3 suggests a transformation of
the response variable is in order.The residual plot of
Figure 4 shows the residuals for the f, model equa-
tion are randomly distributed, as they should be.

For this experimental design, f; fits the experi-
mental data better than f;.While there can be no
certainty that this will always be the case, there are
statistical reasons to believe that f, may turn out to
be a more useful response variable for other test
plans as well. We intend to investigate thisissuein
future work.

A log transformation of f1 was made and evalu-
ated as a response variable in this experimental
design.Results from the logf1 ANOVA are given in
Table 3.The only significant factor detected was the
BD interaction.Therefore, the model for logf1
contains the same three terms as the other models.

The equationiis:
logf1 =1.9-0.03*SprayRate — 0.06*%Solids
+0.002*SprayRate*%Solids.

The r2 was 0.63 and the lack-of-fit was insignificant.
Comparison of Table 3 with Table 2 indicates

much closer agreement of logf; with f, in predic-
tion of significant interactions. As a whole, the rela-
tive magnitude of the probabilities of logf1 are in
close agreement with those of f,.The logf; r2 value
of 0.63 isidentical to that of f, and improved over
the untransformed f;. Examination of the interac-
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Dissolution Fit Factors ... continued
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Figure 4: Residuals vs. Predicted f,

tion plot in Figure 5 also indicates close agreement with the f,
interaction plot of Figure 2. Most notably, interactions BC and
CD are no longer parallel after the log transformation of f;.

The residual plot of log(f;) also shows none of the curvi-
linear or funnel shape evident in Figure 3. A normal proba-
bility plot of the residuals confirms the observation,that the
residuals for log(f;) are normally distributed (Figure 6).The
log-transformed f; appears to fit the observations from the
experimental design much better than f; in this case.

The improved fit of log(f;) can be explained by the mathe-
matical relationship between f; and f,.Both are measures of
distance between two curves,and both utilize the common
term, R; -Ty, to represent the distance. In fact, the two dissolu-
tion comparison metrics,f; and f,, can be expressed in terms
of each other.In this experiment log(f;) can be adequately
described in terms of f, by the simple non-linear model
log(f;) = 5.677 - 0.051*f,.The relationship is depicted graphi-
callyin Figure 7 (page 18).The r2 for this equation was 0.995.

The implication here is that the choice of dissolution fit
factorin the modeling of complex systems must not be
taken lightly.The model developed must be thoroughly

tested to insure the predictions are accurate. For the devel-
opment scientist conducting early formulation and process
studies, the impact of following the wrong path can lead to
project delays, wasted resources, a poorly or incorrectly opti-
mized formula and general confusion over the data.For the
production engineer conducting evolutionary operations
(EVOP) on the plant floor to make slight improvements to
product yield or performance, the impact of developing and
following a poor model can be wasted resources, out of
specification product, recalls and confusion over the process
possibly resulting in a SUPAC submission error.

Conclusions

In the analysis of this experimental design, it was clearly
shown that thefit factors,f; and f,,do not function equally as
response variables even though both fit factors provide
simple measures of the relative distance between two
profiles.The use of these fit factors as response variables in
statistically designed experiments should be considered
carefully and any models developed must be tested fully.
Failure to fully test models developed with these fit factors
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Figure 5:  Interaction Plot of log(f")
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(MDT),Sd,Rescigno’sindex,etc. as response vari-

100 5 ables.The authors would like to receive feedback
from those in the industry who may have
| encountered similar experiences or who can
L share experimental design data for this type of
analysis.
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