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ABSTRACT
Introduction: The compendial method specified in the United States Pharmacopeia (USP) General Chapter Dissolution 
<711> serves as a standard for batch quality. Although it has been commonly used by industry as a batch release test, 
it lacks any statistical underpinning. This study proposes the parametric tolerance interval test (PTIT) as a robust risk-
based procedure for batch release decisions. The PTIT approach can be calibrated to match the operating characteristics 
of USP <711> under specific test settings to allow for flexible decision criteria, multiple stages, varying sample sizes, and 
alpha-spending adjustments if needed. Methods: PTIT compares a one-sided, beta-content, gamma-based confidence 
tolerance limit against a testing limit. Monte Carlo simulations were used to calculate the operating characteristics of USP 
<711> and PTIT across different testing parameters. The robustness of PTIT was evaluated for deviations from normality, 
and a Bayesian PTIT variant is introduced, with inference through posterior probabilities. Results: Implementing PTIT 
is recommended by comparing a 95% confidence/85% content tolerance limit to the Q – 5 testing limit. This approach 
allows for other confidence and content levels, as considered appropriate. The operating characteristics align well with 
USP <711> when the SD of the mean is 3%. PTIT remains robust to slight departures from normality. The Bayesian 
approach is equally viable while also providing the ability for prior information inclusion as well as consideration of non-
normal data distributions. Conclusion: The PTIT offers a practical solution for customizing dissolution release testing to 
specific product and process needs. This underscores the importance of sophisticated statistical approaches to enhance 
decision-making, transparency, and maintain drug product quality.   
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INTRODUCTION

Dissolution or in vitro release testing of solid 
dose products (e.g., tablets, capsules) is a 
regulatory and commercial necessity. Regulations 

mandate that drug product batches meet compendial 
dissolution specifications prior to distribution, and 
post-marketing commercial testing tracks batch quality 
consistency. In vitro release testing also provides 
insights into the disintegration and release rate of the 
active pharmaceutical ingredient, which can indicate 
bioavailability and therapeutic effects.  

The United States Pharmacopeia (USP) general chapter 
<711> specifies equipment, media, protocols, and 

acceptance limits applicable to immediate, extended, 
modified, and delayed release dosage forms requiring 
dissolution testing (1). As companion sets of guidelines, 
USP <1092> advises on assay development, and USP 
<724> extends the concept of standards to transdermal 
dosage forms (2, 3). Companies are advised to develop 
their own tailored batch release procedures, ensuring 
the USP standards are met with high confidence. The 
United States FDA has explicitly noted that USP <711> 
and, similarly, USP <905> (uniformity of dosage units) is 
not intended to provide statistical assurance of quality 
for the broader batch release testing of dose units (4, 5). 
Consequently, manufacturers are advised to implement 
more stringent and statistically grounded release 
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tests, taking into consideration the Biopharmaceutics 
Classification System properties of the formulation or 
compound (6). 

For immediate-release products, USP <711> follows a 
three-stage zero-tolerance decision rule in which the 
summary statistics and limits vary across the stages. 
Because it lacks any underlying parametric model 
that permits hypothesis-driven inference, it cannot 
characterize batch quality. Consequently, there have 
been efforts to develop statistically grounded release  
tests.  The parametric tolerance interval testing (PTIT) was 
proposed by Tsong and Shen as a consistent underlying 
model and hypothesis-based batch population inference 
approach (7). Subsequent works by Hauck et al., Dong 
et al., and Otava et al., refined the PTIT operating 
characteristics, with calibration enabling alignment with 
USP <711> stringency (8–10).

The FDA supports statistical approaches like PTIT for 
batch release testing of dissolution and broader quality 
assurance, as evidenced in its guidance for inhalation and 
nasal drug products. The current work builds upon the 
endeavors of Hauck et al., Dong et al., and Otava et al. to 
provide definitive recommendations for the use of PTIT for 
hypothesis-driven batch release testing (8–10). This study 
assesses the statistical power of PTIT under a variety of 
scenarios and illustrates its robustness to deviations from 
normality. Finally, this study aims to provide a modernized 
PTIT via Bayesian method to accommodate the possibility 
of prior information or non-normal distributions. 

METHODS
Parametric Tolerance Interval Test (PTIT)
Consider the population of solid oral dosage units 
(without loss of generality, tablets) in a batch. Let Y 
denote the percent dissolution of a tablet at a predefined 

time point and let Q denote the dissolution criterion from 
USP <711>. Assume that Y ~ N(μ, σ2 ) are independent 
normally distributed random variables, where μ = mean, 
and σ = standard deviation (SD). Because the percent 
dissolution must fall above 0% and (roughly) below 
100%, some care must be taken in making the normality 
assumption. It is our experience that, over a wide range 
of time points chosen to describe the dissolution profile, 
the normality assumption is reasonable. This is frequently 
the case in the region of Q = 70–80%. Solutions for non-
normal distributions will be discussed later.

For lower testing limit L, (i.e., L ≤ Q) and for proportion 
p, a reasonable null (H0) and alternative (HA) hypothesis 
for batch release testing is given by H1 and visualized in 
Figure 1.  

	 H0: Less than 100p% of tablets > L

	 HA: At least 100p% of tablets > L 

Let qp (μ, σ2) = μ - ɸ-1(p)σ denote the lower 100(1 – p)% 
quantile of Y, and ɸ-1(p) is the inverse of the standard 
normal cumulative distribution function. To declare HA in 
H1, we must have qp(μ, σ2) > L. If tolerance limit TL is a 
lower 100(1 – α)% confidence limit for qp(μ, σ2) and TL > L, 
we can state that at least 100p% of tablets in the batch are 
> L with 100(1 – α)% confidence. To test the hypotheses in 
H1, we declare HA if TL > L. 

A lower 100(1 – α)% confidence limit for qp(μ, σ2) is also 
called a 100(1 – α)%/100p% Beta-content tolerance 
limit for Y. Under the normal distribution assumption, a 
100(1 – α)%/100p% tolerance limit is given in Chapters 
2 (frequentist) and 11 (Bayesian) by Matthew and 
Krishnamoorthy (11). The procedure of testing H1 with 
a tolerance interval is called a one-stage parametric 

Figure 1. (a) Normal distribution on the H0/HA border for testing hypothesis 1 (H1). (b) Normal distribution that meets with HA of H1. 
Diss: dissolution; H0: null hypothesis; HA: alternative hypothesis; L: lower limit.

(H1)
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tolerance interval test (PTIT-1). As an alternative test 
statistic, a Bayesian rule can be applied to accept HA if 
the posterior probability that qp(μ, σ2) > L is at least 1 - α. 
The Bayesian paradigm proves especially useful when a 
non-normal distributional assumption is imposed on the 
dissolution data. For now, the standard classical statistical 
approach is explored.

Because USP <711> is a three-stage test, consider a three-
stage PTIT (PTIT-3) with sample sizes n1 = 6 for stage 1, n2 
= 12 for stage 2, and n3 = 24 for stage 3. Let Yj denote the 
percentage of dissolution for the jth tablet, with Yj ~ N(μ, 
σ2); j = 1, …, 24. Let ȳi and si denote the sample mean and 
SD of the full sample at the ith stage, respectively. Testing 
of multiple stages is adjusted for alpha-spending (α1, α2, 
α3) to achieve an overall type 1 error, α. The lower 100(1 
– α)%/100p% tolerance limit for the ith stage is given by 
Eq. (1). 

where t-1 (η, λ, ϕ) is the 100η% quantile of the non-
central T distribution with λ degrees of freedom and non-
centrality parameter (ncp) ϕ.

Different alpha-spending calculations may be explored 
and employed, depending on costs, risks, and stage 
of development considerations. We follow Tsong and 
Shen, who implemented the alpha-spending approach 
of O’Brien and Fleming with an overall α = 0.05 so that 
α1 = 0.00009, α2 = 0.00554, and α3 = 0.04824 (7, 12). 
Another reasonable choice, as performed by Novick et 
al., is the DeMets and Lan and Pocock alpha-spending 
function, which yields α1 = 0.0179, α2 = 0.0189, and α3 = 
0.0279 and more evenly distributes the risk across testing 
stages (13–17). While O’Brien and Fleming put a larger 
burden on testing in stages 1 and 2 and may be seen 
as well-aligned with USP <711>, both alpha-spending 
methods share an overall type 1 error rate of 0.05. The 
choice of alpha spending adjustment may also be linked 
to stage of process validation, as defined by the 2011 
process validation FDA guidance (18). It makes sense to 
apply the O’Brien and Fleming adjustment during process 
validation stages 1, 2, and early 3 (not to be confused 
with testing stages), when the historical knowledge of the 
process is still limited (12). But later in process validation 
stage 3, when the historical knowledge of the process has 
accumulated, relaxing the adjustment to the DeMets and 
Lan method may be justified (16). 

At the ith testing stage, HA in H1 may be accepted if TL(i) 
> L; otherwise, testing proceeds to the next stage. In this 

work, if HA is not accepted at stage 3, the test results in a 
failure and the batch cannot be released to market. 

Without loss of generality, let Q = 80% for the remainder 
of this paper. Dong et al. and Otava et al. examined the 
PTIT under the assumptions laid out in this section, with 
L = Q across various choices for p (9, 10). This PTIT is 
considered to be overly conservative compared to the 
operating characteristics specified in USP <711>, given 
that, for the empirical requirements of stage 3, about 
92% (22 out of 24) of dosage units must exceed Q – 15. 
Instead, we consider a PTIT with L = Q - δ for some δ ≥ 0. 
In the Results section, a Monte Carlo study will explore 
the values δ and p so that, under selected conditions, the 
PTIT-3 operating characteristic (i.e., probability to declare 
HA in Eq. 1) will be similar to USP <711> (i.e., probability 
to satisfy USP <711> requirements). By careful selection 
of Q, δ, and p, the user may ensure that the probability to 
declare HA in H1 is not larger than the probability to meet 
the requirement of USP <711>.

Confidence Interval Test (CIT)
For lower testing limit M (i.e., M ≤ Q), a reasonable 
hypothesis for batch release testing is given by H2.

		          H0: μ ≤ M

		          HA: μ > M

A lower 100(1 – α)% confidence limit for the batch mean 
is given in Chapter 7 by Ross (19).

To test the hypotheses in H2, we declare HA if confidence 
limit CL > M. As a comparator to USP <711>, in which one 
must show that the sample mean ȳ > Q, because CL < ȳ, it 
follows that it is desirable for M < Q.

As with the tolerance limit, the lower 100(1 – α)% 
confidence limit is modified with alpha-spending for the 
three stages, as shown in Eq. (2).

where t-1 (η, λ) is the 100η% quantile of the central T 
distribution with λ degrees of freedom.

In this method, the three-stage procedure of testing 
H2 with Eq. (2) is called the confidence interval test 
(CIT). Because USP <711> places requirements on both 
individual dosage units and the sample mean, it makes 
sense to require both the PTIT and CIT. That is, one must 
claim HA in both H1 and H2 by showing TL(i) > L and CL(i) > 
M at some stage i = 1, 2, or 3. Because this is an example 

 (2)( ) = −1( 1 − α ,  − 1)  , 
√

(1)( ) = − −1  1 − α ,  − 1,  = −1( )  , ȳi ( Φ√—
√—)

(H2)
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of intersection-union testing, no adjustment to the type 
1 error (except for the alpha-spending) is made (19). A 
Bayesian rule can also be applied to jointly accept HA in 
H1 and H2 if the posterior probability that qp (μ, σ2) > L 
and μ > M is at least 1 - α. As with the PTIT, we consider a 
CIT with M = Q - γ for some γ ≥ 0. 

Monte Carlo Simulations for Normally Distributed 
Data
Monte Carlo simulations were performed to investigate 
the operating characteristics for meeting the 
requirements of USP <711> (Table 1), the PTIT alone, and 
the combined PTIT and CIT (PTIT+CIT). It will be shown in 
this section that the added value of the CIT is debatable, 
so the focus of this work will be on the PTIT. Although the 
sample size in USP <711> is fixed with three stages, the 
operating characteristics of the PTIT were investigated 
with larger sample sizes and separately, with only one or 
two stages.

Unless otherwise noted, Q = 80% and data were generated 
as independent Yj ~ N (μ, σ2) (j = 1, …, 24), with 75 < μ < 
90 and σ = 0.5, 1, 3, 4.5, 6. For the PTIT with TL(i) > Q – 
δ, testing parameters were varied according to p = (0.80, 
0.85, 0.90, 0.95), and δ = (0, 5, 10, 15). For the CIT with CL 
(i) > M - γ, we examined γ = (0, 3).

To determine the operating characteristics for the PTIT 
with TL(i) > Q – 5 as a function of sample size, the sample 
size was increased at each stage by 1x (n1 = 6, n2 = 12, n3 = 
24), 2x (n1 = 12, n2 = 24, n3 = 48) , and 3x (n1 = 18, n2 = 36, 
n3 = 74). O’Brien and Fleming alpha spending is a function 
of the relative sample size of stage, so the values of (α1, 
α2, α3) remain unchanged (12). Because the operating 
characteristics of the PTIT and USP <711> can be matched 
at σ = 3, p = 0.85, and δ = 5, the main interest is to examine 
the operating characteristic for 3 < σ < 6% to determine if 
the PTIT can recover its disadvantage for σ > 3%. 

To study the effect of staged testing on the PTIT, single-
stage testing (PTIT-1) was performed with n1 = 24; two-
stage testing (PTIT-2) was performed with n1 = 12 and n2 
= 24; and PTIT-3 was performed with n1 = 6, n2 = 12, n3 = 

24. With an overall α = 0.05, there is no alpha-spending 
adjustment for PTIT-1. For PTIT-2, the O’Brien and Fleming 
alpha-spending adjustment is α1 = 0.000687 and α2 = 
0.049771. For PTIT-3, α1, = 0.00009, α2 = 0.00554, and 
α3 = 0.04824. The CIT was only examined in three-stage 
testing with the same sample sizes and alpha-spending 
adjustments as PTIT-3. Each simulated scenario was run 
10,000 times.

Monte Carlo Simulations for Non-Normal Data
Although the normal distribution may be a reasonable 
choice for most dissolution data, it is plausible that 
dissolution distribution for some products may deviate 
from this assumption. We examine the robustness of 
the PTIT with TL(i) = Q – 5 (δ = 5) and p = 0.85 to such 
deviations by characterizing the operating characteristics 
of the PTIT under a skew normal (SN) and a T distribution 
(see supplemental material for functional forms). In the 
SN probability density function, β controls the skewness, 
ϵ is the location parameter, and ω is the scale parameter 
(20). In the T probability density function, n denotes the 
degrees of freedom, ϵ is the location parameter, and 
ω is the scale parameter (21). Relative to the normal 
distribution, the SN with a negative skew parameter is 
skewed to the left, which places more probability in the 
left tail, and the T distribution puts more probability in 
both tails. 

To illustrate the skew and extra tail probability, a Monte 
Carlo simulation was performed to explore the robustness 
of the proposed PTIT-3 to the SN and T distributions 
relative to the normal distribution. The means and tail 
probabilities less than Q = 80% were matched across all 
three distributions for each scenario. Means ranged from 
(Q + 1) < ϵ < 90%, and tail probabilities are 0.01, 0.1, 0.2, 
and 0.3. The skewness settings for the SN distribution 
were β = –4, –3, –2, –1, 0 (where –4 = large skew and 0 = no 
skew). The degrees of freedom for the T distribution are 
γ = 3, 5, 10, 25, ꚙ (where 3 = larger tail probabilities, ꚙ = 
normal tail probabilities). In all cases, the scale parameter 
was derived from the other parameters.

Bayesian Method for PTIT and CIT
Equations (2) and (4) provide a lower 100(1 – α)%/100p% 
tolerance limit and a lower 100(1 – α)% confidence limit 
for the mean, respectively, using a frequentist construct 
specifically for the normal distribution. Although 
Bayesian analysis may directly calculate the posterior 
distribution to meet HA in H1 and H2, for a Bayesian 
analogue to the frequentist system, one may construct 
a lower 100(1 – α)%/100p% Bayesian tolerance limit by 
calculating the lower 100α% quantile of the posterior 
distribution TL = μ - σΦ-1 (p)|Y, where Φ-1 (p) is the inverse 

Table 1. Operating Characteristics for USP <711> Requirements

Based on information from USP <711> (1).
USP: United States Pharmacopeia. 

Stage Sample size USP <711> Criteria

1 n1 = 6 All 6 values > Q + 5

2 n2 = 12 (6 additional) Mean of 12 values > Q
All 12 values > Q – 15

3 n3 = 24 (12 additional) Mean of 24 values > Q
At least 22 of 24 values > Q – 15

All 24 values > Q - 25
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cumulative distribution function of the standard normal, 
and Y denotes the sampled dissolution data. A lower 
100(1 – α)% credible limit (CL) for μ may substitute for 
the confidence limit. With the Jeffreys’ prior, Matthew 
and Krishnamoorthy show that TL is equal to H2 and CL is 
equal to Eq. (3) (11). However, depending on applications 
and justifiable prior knowledge, Bayesian analysis may 
leverage different prior distributions, which would then 
affect the values of TL and CL. 

For PTIT-3, one might use the alpha-spending procedure 
suggested for frequentist testing and calculate the lower 
100(1 – αi)% quantile TL (i) = μ - σΦ-1(p)|Yi and a CL(i), a 
lower 100(1 – αi)% credible limit for μ, where Yi denotes 
the cumulative sampled dissolution data at the ith stage. 
It may be antithetical to use an alpha-spending schema 
because Bayesian probabilities, unlike p-values, are not 
calculated with conditioning on H0 (Bayes factors are a 
notable exception). 

For consistency with the frequentist approach, an 
analogous test can be constructed using the Bayesian 
versions of TL(i) and, if desired, CL(i). From these, one may 
construct Bayesian PTIT and PTIT+CIT procedures. Note 
that for the PTIT+CIT, the Berger and Hsu intersection-
union procedure does not extend to Bayesian hypothesis 
testing (22). Bayesian analysis would instead calculate the 
joint posterior probability (Pr) of HA directly via Eq. (3).

Then, at the ith stage, if pi  > 1 – αi, HA is declared; otherwise, 
move to the next stage.

Bayesian statistics may also extend the PTIT and CIT to 
other distributions. Let Yj ~ F(θ), for some distribution F(.) 
with parameter vector θ, j = 1, 2, …, 24 (or some other 
sample size) and let g(θ) denote the mean of the 
distribution. For the PTIT, a lower 100(1 – α)/100p% 
Bayesian tolerance limit is given by the lower 100(1 – α)% 
quantile of the posterior distribution TL = F-1 (θ, p)|Y and CL 
may  be  given as  the  lower  100(1 – α)% posterior 
quantile of g(θ). Thus, the generalization of Eq. (3) is given 
by Eq. (4).

As before, if pi > 1 – αi, HA is declared at the ith stage; 
otherwise, move to the next stage.

For normally distributed data and vaguely informative 
priors, the Bayesian method should perform similarly to 
the frequentist procedures described in earlier sections. 
The Bayesian method is demonstrated in the results with 

(3)=  (μ − σ × Φ−1( ) >  and > |  ) 

(4)=  ( −1( , ) >  and ( ) > |  ) 

SN and T-distributed computer-generated data with (β = 
-3, ϵ = 88, ω = 4) and (γ = 5, ϵ = 85, ω = 2), respectively.

RESULTS
Monte Carlo Simulations
USP <711> and PTIT
To determine the operating characteristics for satisfying 
the requirements USP <711> and the PTIT alone using Eq. 
(1) to test H1, a Monte Carlo simulation was conducted. 
The operating characteristics for stage 3 (overall 
probability) are provided in Figure 2.

From Figure 2, calibration of the PTIT with USP <711> 
can be determined in several places. For example, the 
operating characteristics match up well when σ = 3, p = 
0.85 and δ = 5. From our experience, σ = 2–3% stands as 
a typical range, with 1–2% and 3–5% representing tight 
and variable dissolution methods, respectively. Producers 
with an SD that falls outside of the range of these 
simulations are encouraged to conduct their own set of 
simulations to examine the operating characteristics for 
their specific analytical circumstances. In this work, the 
PTIT with σ =3, p = 0.85, δ = 5 stands as a reasonable 
point of comparison against USP <711>. Given the set 
of parameters, the PTIT procedure rewards lower SD 
and penalizes larger SD compared to USP <711>. This is 
a desirable feature of the PTIT. Another potential PTIT 
choice is σ = 2.5, p = 0.90, δ = 5. Earlier, p = 0.92 and δ = 15 
was suggested to be a reasonable choice, but, from Figure 
2, one can infer that this scenario would be far too liberal 
to match with USP <711> until σ = 6, which represents a 
highly variable dissolution method. In practice, for batch 
release characterization and testing, one should choose a 
PTIT that is more conservative than the USP <711> criteria 
(Table 1).

The operating characteristics for each stage of the PTIT 
with p = 0.85 and δ = 5 are shown in Supplementary Figure 
S1. Across all stages, relative to USP <711>, the PTIT is 
more liberal with small SD values and more conservative 
with larger SD values.

USP <711> and PTIT + CIT
To determine the operating characteristics for satisfying 
the requirements of USP <711>  and the PTIT+CIT, using 
Eq. (1) to test H1 and Eq. (2) to test H2, a Monte Carlo 
simulation was conducted. The operating characteristics 
for stage 3 (overall probability) are provided in Figure S2 
with CL (i) > Q (γ = 0). As expected, one cannot calibrate 
the PTIT+CIT to match with USP <711> for any value of p 
or δ when σ ≥ 2.5. In Figure 3, the operating characteristic 
of the PTIT+CIT with CL (i) > Q - 3 (γ = 3) is compared to 
the PTIT alone, with δ = 5, 10. When δ = 5, there is no 



171NOVEMBER 2025
www.dissolutiontech.com

significant difference between the PTIT+CIT and PTIT 
alone except when σ ≥ 1, which represents a rare tight 
dissolution assay. The differences are made clear when δ 
= 10, with decreasing preference for the PTIT alone as the 
SD increases. Considering the recommended PTIT settings 
of p = 0.85 and δ = 5, the CIT does not contribute to the 

stringency of the test procedure, so it is an unnecessary 
test; however, it also appears to do little harm.

PTIT as a Function of Sample Size
The sample size for USP <711> is n1 = 6, n2 = 12, and n3 = 
24. The operating characteristics for PTIT as a function of 

Figure 2. Overall operating characteristics for satisfying USP <711> and three-stage parametric tolerance interval (PTI) tests for normally 
distributed data with a population mean and standard deviation.

Figure 3. Overall operating characteristics for satisfying three-stage parametric tolerance interval (PTI) test alone and combined with the 
confidence interval (CI) test (CL (i) > Q -3) for normally distributed data with a population mean and standard deviation.
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sample size are shown in Figure S3. Doubling and tripling 
the sample size improves the operating characteristic of 
the PTIT but cannot match that of USP <711> for σ ≥ 4.5%. 

PTIT with Multi-Stage Testing
As shown in Figure S4, the number of stages does not 
appear to affect the probability to satisfy H1 with the 
PTIT. Because staging may affect efficiency, the expected 
number of dosage units was calculated. For single-stage 
testing, the number of units is always 24. For two-stage 
testing, the expected number of units is 12 + 12 x (1 – p1), 
where p1 is the probability to meet the requirements of 
the PTIT in stage 1. For three-stage testing, the expected 
number of units is 6 + 6 x (1 – p1) + 12 x (1 – p2), where pi 
is the probability to meet the requirements of the PTIT in 
stage i, (i = 1 or 2). The expected number of dosage units 
are shown in Figure S5, which indicates that multi-stage 
testing generally requires fewer dosage units, making 
it the more efficient option. This advantage must be 
balanced against the requirement of representativeness.

Robustness of the PTIT to Non-Normality
Figure S6 shows a normal distribution with parameters 
μ = 85 and σ = 3.04; an SN distribution with parameters 
β = –4, ϵ = 88.3, and ω = 4.2; and a T distribution with 
parameters γ = 3, ϵ = 85, and ω = 2.1, each possessing a 
tail probability below Q = 80% of 0.05. The scenarios β = 0 
for SN and γ = ꚙ for T represent the normal distribution. 
The operating characteristics are shown in Figure S7. It 
appears that skewness and excess tail probability both 
drive operating characteristic probabilities lower. Thus, 
for the SN and T distributions, it may be inferred that the 
PTIT shows robustness to deviations from normality.

Bayesian Methods for Non-Normality
To demonstrate the Bayesian method, 24 observations 
were generated and split into three stages, respectively, 
from the SN (β = -3, ϵ = 88, ω = 4) and T (γ = 5, ϵ = 85, ω = 
2) distributions. The results are provided in Table S1 and 
Figure S8. The mean for both distributions is 85%, and the 
5% and 95% quantiles of the two distributions are similar.

The PTIT, CIT, and probability pi  from  Eq. (4)  were 
calculated by correctly assuming  the SN and T 
distributions. For model fitting, vaguely informative prior 
distributions are given by the following, where HC = half-
Cauchy, Γ is the gamma distribution with parameters 
shape (sh) and scale (sc), and Q = 80%.

  •   SN: β~T (γ = 3, ϵ = 0, ω = 1); ϵ~N (μ = Q, σ = 10); ω~HC (0, 1)	

  •   T: γ~Γ (sh = 2, sc = 0.1); ϵ~N (μ = Q, σ = 10); ω~HC (0, 1)

Parameter estimates (posterior medians) with 95% 
credible limits for the SN and T distributions are provided 
in Tables S2 and S3, respectively. Results of testing are 
given in Table 2, which shows that the SN-generated data 
fails stages 1 and 2 but passes in stage 3. The T-generated 
data would fail stage 1 but pass at stage 2. The same 
conclusion was drawn using PTIT+CIT and Eq. (3) for the 
assessment.

DISCUSSION
Dissolution testing for the purpose of assuring 
drug product  quality  has  a long history as part of 
pharmaceutical company’s overall control strategy. USP 
<711> sets forth a compendial standard of quality and has 
often been used for batch release testing (1). Although 
this practice has been criticized by both the scientific 
community and the FDA, the limited literature on the topic 
has had little influence in changing industry practices. 
Consequently, this study provides an updated view of  an  
existing statistically  based decision procedure. 

The PTIT statistical approach for batch release has been 
previously proposed for content uniformity and more 
recently, for dissolution. The current study was built upon 
this approach and proposes a flexible PTIT statistical 
procedure that permits varying the decision rule criterion, 
the number of stages and sample sizes, and proposed a 
Bayesian counterpart with a decision criterion supported 
by a posterior probability. 

Table 2. Results of Bayesian PTIT, CIT, and Posterior Probability for Batch Release Testing with Q = 80%

Distribution Stage αi
a 1—αi TL(i)

Must be > Q – 5
CL(i)

Must be > Q – 3
pi

Must be > (1 – αi)

SN 1 0.00009 0.99991 58.9 (fail) 72.3 (fail) 0.957 (fail)

2 0.005544 0.994456 74.5 (fail) 79.9 0.992 (fail)

3 0.048242 0.951758 78.6 83.2 > 0.999

T 1 0.00009 0.99991 63.3 (fail) 76.0 (fail) 0.988 (fail)

2 0.005544 0.994456 79.1 82.9 > 0.999

3 0.048242 0.951758 81.4 84.5 > 0.999
aalpha-spending values from O’Brien and Fleming (11). 
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It is encouraging to observe the increasing regulatory 
acceptance of Bayesian approaches. A Bayesian PTIT 
approach can offer three advantages:

1.	 The Bayesian perspective supports patient-centric 
risk-based release decisions by quantifying batch 
quality probabilistically.

2.	 When prior knowledge about underlying model 
parameters (e.g., mean and SD) can be justified 
from representative historical studies, the 
Bayesian paradigm provides distributional tools 
for expressing that knowledge quantitatively 
and incorporating it seamlessly into the decision 
process.

3.	 For products that require more complex modeling 
(e.g., non-normal, hierarchical, or nonlinear 
models), non-Bayesian approaches may require 
approximations or even be intractable. Bayesian 
methods are less dependent on analytical 
derivations and provide exact solutions to any 
desired degree of Monte Carlo accuracy.

An alpha spending adjustment based on the O’Brien and 
Fleming method was implemented in the multiple stage 
testing to accommodate sequential testing (12). For 
convenience and for comparative purposes, this study 
assessed operating characteristics using the same sample 
sizes as given in the USP <711> three-stage test with Q = 
80% at chosen values of σ and p (proportion above Q). 
Given the set of parameters, the PTIT procedure rewards 
lower variability and penalizes larger variability compared 
to USP <711>. For typical parameter values, it is a more 
stringent test procedure than the USP <711> rules. The 
addition of a simultaneous test on the batch mean value 
was found to provide little, if any, advantage in forming a 
more informative or more stringent test. Robustness of 
the PTIT procedure was studied through the assessment 
of mild skewness and wide tails. For both cases, the 
PTIT procedure showed robustness to departures from 
normality, especially in those cases where the mean was 
close to Q. Finally, a Bayesian version of the proposed test 
was detailed, with the possibility of the incorporation 
of appropriate prior information and non-normal data 
distributions. Inference is then provided in terms of the 
posterior probabilities. 

Although PTIT procedures have been proposed previously, 
we are not aware of any approved drug product that 
employs this approach to assure conformance to the USP 
<711> standard. It is important to understand that there 
is always some probability that a given dataset passes the 

PTIT as we have described it but fails to meet USP <711> 
criteria (1). The operating characteristic curves in this 
work demonstrate that the probability to declare HA with 
the PTIT can be no larger than the probability to meet the 
USP requirements. 

This study is not proposing to change or replace the USP 
<711> compendial standard. The intent is to propose 
a coherent statistical framework for batch release 
decisions that, if passed, will provide assurance that the 
test batch meets the existing compendial standard with 
similar or smaller probability. This PTIT test is framed as a 
batch release decision tool, but it seems reasonable that a 
similar PTIT, with appropriately adjusted parameters, may 
also be useful for other purposes, such as developmental 
or investigational decision making.

CONCLUSION
The need for a statistically based decision procedure 
for dissolution release testing was the motivation for 
developing this procedure, especially in view of the 
widespread but inappropriate application of USP <711> 
for batch release by companies. The proposed Bayesian 
PTIT approach promotes patient centric decision-making 
by allowing customizable criteria, direct risk control, 
and the ability to integrate historical data. It provides 
strict evaluation standards, ensuring a rigorous risk 
control strategy with good performance characteristics 
relative to the USP <711> criteria. The proposed PTIT 
method offers a robust statistical framework for reliable 
drug product quality assurance and is easily adapted to 
conform to companies’ risk tolerance practices specific to 
the product and the process.
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