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ABSTRACT

Introduction: The compendial method specified in the United States Pharmacopeia (USP) General Chapter Dissolution
<711> serves as a standard for batch quality. Although it has been commonly used by industry as a batch release test,
it lacks any statistical underpinning. This study proposes the parametric tolerance interval test (PTIT) as a robust risk-
based procedure for batch release decisions. The PTIT approach can be calibrated to match the operating characteristics
of USP <711> under specific test settings to allow for flexible decision criteria, multiple stages, varying sample sizes, and
alpha-spending adjustments if needed. Methods: PTIT compares a one-sided, beta-content, gamma-based confidence
tolerance limit against a testing limit. Monte Carlo simulations were used to calculate the operating characteristics of USP
<711>and PTIT across different testing parameters. The robustness of PTIT was evaluated for deviations from normality,
and a Bayesian PTIT variant is introduced, with inference through posterior probabilities. Results: Implementing PTIT
is recommended by comparing a 95% confidence/85% content tolerance limit to the Q — 5 testing limit. This approach
allows for other confidence and content levels, as considered appropriate. The operating characteristics align well with
USP <711> when the SD of the mean is 3%. PTIT remains robust to slight departures from normality. The Bayesian
approach is equally viable while also providing the ability for prior information inclusion as well as consideration of non-
normal data distributions. Conclusion: The PTIT offers a practical solution for customizing dissolution release testing to
specific product and process needs. This underscores the importance of sophisticated statistical approaches to enhance
decision-making, transparency, and maintain drug product quality.
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INTRODUCTION

issolution or in vitro release testing of solid
Ddose products (e.g., tablets, capsules) is a

regulatory and commercial necessity. Regulations
mandate that drug product batches meet compendial
dissolution specifications prior to distribution, and
post-marketing commercial testing tracks batch quality
consistency. In vitro release testing also provides
insights into the disintegration and release rate of the

active pharmaceutical ingredient, which can indicate
bioavailability and therapeutic effects.

The United States Pharmacopeia (USP) general chapter
<711> specifies equipment, media, protocols, and

acceptance limits applicable to immediate, extended,
modified, and delayed release dosage forms requiring
dissolution testing (1). As companion sets of guidelines,
USP <1092> advises on assay development, and USP
<724> extends the concept of standards to transdermal
dosage forms (2, 3). Companies are advised to develop
their own tailored batch release procedures, ensuring
the USP standards are met with high confidence. The
United States FDA has explicitly noted that USP <711>
and, similarly, USP <905> (uniformity of dosage units) is
not intended to provide statistical assurance of quality
for the broader batch release testing of dose units (4, 5).
Consequently, manufacturers are advised to implement
more stringent and statistically grounded release
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tests, taking into consideration the Biopharmaceutics
Classification System properties of the formulation or
compound (6).

For immediate-release products, USP <711> follows a
three-stage zero-tolerance decision rule in which the
summary statistics and limits vary across the stages.
Because it lacks any underlying parametric model
that permits hypothesis-driven inference, it cannot
characterize batch quality. Consequently, there have
been efforts to develop statistically grounded release
tests. The parametric tolerance interval testing (PTIT) was
proposed by Tsong and Shen as a consistent underlying
model and hypothesis-based batch population inference
approach (7). Subsequent works by Hauck et al., Dong
et al, and Otava et al, refined the PTIT operating
characteristics, with calibration enabling alignment with
USP <711> stringency (8-10).

The FDA supports statistical approaches like PTIT for
batch release testing of dissolution and broader quality
assurance, as evidenced in its guidance for inhalation and
nasal drug products. The current work builds upon the
endeavors of Hauck et al., Dong et al., and Otava et al. to
provide definitive recommendations for the use of PTIT for
hypothesis-driven batch release testing (8—10). This study
assesses the statistical power of PTIT under a variety of
scenarios and illustrates its robustness to deviations from
normality. Finally, this study aims to provide a modernized
PTIT via Bayesian method to accommodate the possibility
of prior information or non-normal distributions.

METHODS

Parametric Tolerance Interval Test (PTIT)

Consider the population of solid oral dosage units
(without loss of generality, tablets) in a batch. Let Y
denote the percent dissolution of a tablet at a predefined

time point and let Q denote the dissolution criterion from
USP <711>. Assume that Y ~ N(u, o® ) are independent
normally distributed random variables, where L = mean,
and o = standard deviation (SD). Because the percent
dissolution must fall above 0% and (roughly) below
100%, some care must be taken in making the normality
assumption. It is our experience that, over a wide range
of time points chosen to describe the dissolution profile,
the normality assumption is reasonable. This is frequently
the case in the region of Q = 70—-80%. Solutions for non-
normal distributions will be discussed later.

For lower testing limit L, (i.e., L < Q) and for proportion
p, a reasonable null (Hp) and alternative (Ha) hypothesis
for batch release testing is given by H1 and visualized in
Figure 1.

Ho: Less than 100p% of tablets > L (H1)

Ha: At least 100p% of tablets > L

Let gp (W, 0%) = p - d™(p)o denote the lower 100(1 — p)%
quantile of ¥, and ¢™(p) is the inverse of the standard
normal cumulative distribution function. To declare Ha in
H1, we must have g,(u, 0°) > L. If tolerance limit 7, is a
lower 100(1 — a)% confidence limit for g,(W, 0%) and T; > L,
we can state that at least 100p% of tablets in the batch are
> L with 100(1 — a)% confidence. To test the hypotheses in
H1, we declare Hp if T; > L.

A lower 100(1 — a)% confidence limit for g,(p, 0) is also
called a 100(1 — a)%/100p% Beta-content tolerance
limit for Y. Under the normal distribution assumption, a
100(1 — a)%/100p% tolerance limit is given in Chapters
2 (frequentist) and 11 (Bayesian) by Matthew and
Krishnamoorthy (11). The procedure of testing H1 with
a tolerance interval is called a one-stage parametric

(a)

This scenario lies on the
Ho/H, border

Area =p

L Q 100
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Figure 1. (a) Normal distribution on the H /H, border for testing hypothesis 1 (H1). (b) Normal distribution that meets with H, of H,.
Diss: dissolution; H: null hypothesis; HA: alternative hypothesis; L: lower limit.
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tolerance interval test (PTIT-1). As an alternative test
statistic, a Bayesian rule can be applied to accept H, if
the posterior probability that gp(1, 0%) > Lis at least 1 - a.
The Bayesian paradigm proves especially useful when a
non-normal distributional assumption is imposed on the
dissolution data. For now, the standard classical statistical
approach is explored.

Because USP <711> is a three-stage test, consider a three-
stage PTIT (PTIT-3) with sample sizes n, = 6 for stage 1, n,
=12 for stage 2, and n3 = 24 for stage 3. Let Y; denote the
percentage of dissolution for the jt" tablet, with Y~ N(y,
0%);j=1, .., 24. Let j; and s; denote the sample mean and
SD of the full sample at the *" stage, respectively. Testing
of multiple stages is adjusted for alpha-spending (o, a5,
a3) to achieve an overall type 1 error, a. The lower 100(1
— 0)%/100p% tolerance limit for the it" stage is given by

Eq. (2).

T.()) =y~ tH (1= — 1, nep = \/n_i(D_l(p))\/s—:l_i, (1)

where t1 (n, A, ¢) is the 100n% quantile of the non-
central T distribution with A degrees of freedom and non-
centrality parameter (ncp) ¢.

Different alpha-spending calculations may be explored
and employed, depending on costs, risks, and stage
of development considerations. We follow Tsong and
Shen, who implemented the alpha-spending approach
of O’Brien and Fleming with an overall a = 0.05 so that
oy = 0.00009, a, = 0.00554, and a3 = 0.04824 (7, 12).
Another reasonable choice, as performed by Novick et
al., is the DeMets and Lan and Pocock alpha-spending
function, which yields a; = 0.0179, a, = 0.0189, and a3 =
0.0279 and more evenly distributes the risk across testing
stages (13—17). While O’Brien and Fleming put a larger
burden on testing in stages 1 and 2 and may be seen
as well-aligned with USP <711>, both alpha-spending
methods share an overall type 1 error rate of 0.05. The
choice of alpha spending adjustment may also be linked
to stage of process validation, as defined by the 2011
process validation FDA guidance (18). It makes sense to
apply the O’Brien and Fleming adjustment during process
validation stages 1, 2, and early 3 (not to be confused
with testing stages), when the historical knowledge of the
process is still limited (12). But later in process validation
stage 3, when the historical knowledge of the process has
accumulated, relaxing the adjustment to the DeMets and
Lan method may be justified (16).

At the it" testing stage, Ha in H1 may be accepted if T;(/)
> L; otherwise, testing proceeds to the next stage. In this
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work, if Ha is not accepted at stage 3, the test resultsin a
failure and the batch cannot be released to market.

Without loss of generality, let Q = 80% for the remainder
of this paper. Dong et al. and Otava et al. examined the
PTIT under the assumptions laid out in this section, with
L = Q across various choices for p (9, 10). This PTIT is
considered to be overly conservative compared to the
operating characteristics specified in USP <711>, given
that, for the empirical requirements of stage 3, about
92% (22 out of 24) of dosage units must exceed Q — 15.
Instead, we consider a PTIT with L = Q - 6 for some 6 > 0.
In the Results section, a Monte Carlo study will explore
the values § and p so that, under selected conditions, the
PTIT-3 operating characteristic (i.e., probability to declare
Ha in Eq. 1) will be similar to USP <711> (i.e., probability
to satisfy USP <711> requirements). By careful selection
of Q, §, and p, the user may ensure that the probability to
declare Ha in H1 is not larger than the probability to meet
the requirement of USP <711>.

Confidence Interval Test (CIT)
For lower testing limit M (i.e., M < Q), a reasonable
hypothesis for batch release testing is given by H2.

Ho: usM (H2)

Ha:pu>M

A lower 100(1 — a)% confidence limit for the batch mean
is given in Chapter 7 by Ross (19).

To test the hypotheses in H2, we declare H, if confidence
limit C, > M. As a comparator to USP <711>, in which one
must show that the sample mean y > Q, because C; <y, it
follows that it is desirable for M < Q.

As with the tolerance limit, the lower 100(1 — o)%
confidence limit is modified with alpha-spending for the
three stages, as shown in Eq. (2).

CM) =y -t (1-q ni_l)%, (2)

where t* (n, A) is the 100n% quantile of the central T
distribution with A degrees of freedom.

In this method, the three-stage procedure of testing
H2 with Eqg. (2) is called the confidence interval test
(CIT). Because USP <711> places requirements on both
individual dosage units and the sample mean, it makes
sense to require both the PTIT and CIT. That is, one must
claim Ha in both H1 and H2 by showing T,(i) > L and C,(/) >
M at some stage i =1, 2, or 3. Because this is an example



of intersection-union testing, no adjustment to the type
1 error (except for the alpha-spending) is made (19). A
Bayesian rule can also be applied to jointly accept Ha in
H1 and H2 if the posterior probability that g, (u, 0%) > L
and u> M s at least 1 - a. As with the PTIT, we consider a
CITwithM=Q-yforsomey=0.

Monte Carlo Simulations for Normally Distributed
Data

Monte Carlo simulations were performed to investigate
the operating characteristics for meeting the
requirements of USP <711> (Table 1), the PTIT alone, and
the combined PTIT and CIT (PTIT+CIT). It will be shown in
this section that the added value of the CIT is debatable,
so the focus of this work will be on the PTIT. Although the
sample size in USP <711> is fixed with three stages, the
operating characteristics of the PTIT were investigated
with larger sample sizes and separately, with only one or
two stages.

Table 1. Operating Characteristics for USP <711> Requirements

1 n=6 All 6 values>Q+5
2 n, = 12 (6 additional) Mean of 12 values > Q
All 12 values > Q- 15
3 ns3 = 24 (12 additional) Mean of 24 values > Q
At least 22 of 24 values > Q- 15
All 24 values > Q - 25

Based on information from USP <711> (1).
USP: United States Pharmacopeia.

Unless otherwise noted, Q =80% and data were generated
as independent Y;~ N (i, 0?) (j = 1, .., 24), with 75 < pu <
90 and 0 = 0.5, 1, 3, 4.5, 6. For the PTIT with T;(i) > Q -
6, testing parameters were varied according to p = (0.80,
0.85, 0.90, 0.95), and 6 = (0, 5, 10, 15). For the CIT with C;
(i) > M -y, we examined y = (0, 3).

To determine the operating characteristics for the PTIT
with T,(/) > Q-5 as a function of sample size, the sample
size was increased at each stage by 1x (n1=6,n,=12,n3=
24), 2x (n1 =12, n, = 24, n3 =48) , and 3x (n1 = 18, n, = 36,
n3 = 74). O’Brien and Fleming alpha spending is a function
of the relative sample size of stage, so the values of (a,
0, a3) remain unchanged (12). Because the operating
characteristics of the PTIT and USP <711> can be matched
ato=3,p=0.85,and 6 =5, the main interest is to examine
the operating characteristic for 3 < 0 < 6% to determine if
the PTIT can recover its disadvantage for o > 3%.

To study the effect of staged testing on the PTIT, single-
stage testing (PTIT-1) was performed with n; = 24; two-
stage testing (PTIT-2) was performed with n; =12 and n,
= 24; and PTIT-3 was performed with n; =6, n, =12, n3 =

24. With an overall a = 0.05, there is no alpha-spending
adjustment for PTIT-1. For PTIT-2, the O’Brien and Fleming
alpha-spending adjustment is a; = 0.000687 and a, =
0.049771. For PTIT-3, ay, = 0.00009, a, = 0.00554, and
o3 = 0.04824. The CIT was only examined in three-stage
testing with the same sample sizes and alpha-spending
adjustments as PTIT-3. Each simulated scenario was run
10,000 times.

Monte Carlo Simulations for Non-Normal Data
Although the normal distribution may be a reasonable
choice for most dissolution data, it is plausible that
dissolution distribution for some products may deviate
from this assumption. We examine the robustness of
the PTIT with T;()) = Q -5 (6 = 5) and p = 0.85 to such
deviations by characterizing the operating characteristics
of the PTIT under a skew normal (SN) and a T distribution
(see supplemental material for functional forms). In the
SN probability density function, B controls the skewness,
€ is the location parameter, and w is the scale parameter
(20). In the T probability density function, n denotes the
degrees of freedom, € is the location parameter, and
w is the scale parameter (21). Relative to the normal
distribution, the SN with a negative skew parameter is
skewed to the left, which places more probability in the
left tail, and the T distribution puts more probability in
both tails.

To illustrate the skew and extra tail probability, a Monte
Carlo simulation was performed to explore the robustness
of the proposed PTIT-3 to the SN and T distributions
relative to the normal distribution. The means and tail
probabilities less than Q = 80% were matched across all
three distributions for each scenario. Means ranged from
(Q + 1) < € <90%, and tail probabilities are 0.01, 0.1, 0.2,
and 0.3. The skewness settings for the SN distribution
were B=—4,-3,-2,-1,0 (where—4 =large skewand 0=no
skew). The degrees of freedom for the T distribution are
¥y =3,5, 10, 25, oo (where 3 = larger tail probabilities, co =
normal tail probabilities). In all cases, the scale parameter
was derived from the other parameters.

Bayesian Method for PTIT and CIT

Equations (2) and (4) provide a lower 100(1 — a)%/100p%
tolerance limit and a lower 100(1 — a)% confidence limit
for the mean, respectively, using a frequentist construct
specifically for the normal distribution. Although
Bayesian analysis may directly calculate the posterior
distribution to meet Hp in H1 and H2, for a Bayesian
analogue to the frequentist system, one may construct
a lower 100(1 — a)%/100p% Bayesian tolerance limit by
calculating the lower 1000% quantile of the posterior

distribution T, = - o®? (p)|Y, where @ (p) is the inverse
Dissolution
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cumulative distribution function of the standard normal,
and Y denotes the sampled dissolution data. A lower
100(1 — a)% credible limit (C;) for u may substitute for
the confidence limit. With the Jeffreys’ prior, Matthew
and Krishnamoorthy show that T; is equal to H2 and C; is
equal to Eq. (3) (11). However, depending on applications
and justifiable prior knowledge, Bayesian analysis may
leverage different prior distributions, which would then
affect the values of T; and C;.

For PTIT-3, one might use the alpha-spending procedure
suggested for frequentist testing and calculate the lower
100(1 — a;)% quantile T, (i) = u - c®(p)|Y; and a C,(), a
lower 100(1 — a;)% credible limit for u, where Y; denotes
the cumulative sampled dissolution data at the /™" stage.
It may be antithetical to use an alpha-spending schema
because Bayesian probabilities, unlike p-values, are not
calculated with conditioning on Hy (Bayes factors are a
notable exception).

For consistency with the frequentist approach, an
analogous test can be constructed using the Bayesian
versions of T,(i) and, if desired, C,(i). From these, one may
construct Bayesian PTIT and PTIT+CIT procedures. Note
that for the PTIT+CIT, the Berger and Hsu intersection-
union procedure does not extend to Bayesian hypothesis
testing (22). Bayesian analysis would instead calculate the
joint posterior probability (Pr) of Hp directly via Eq. (3).

pi=Pr(u—ox® (p)>Landpu > M|Y;) (3)

Then, atthe it" stage, if p; > 1—ay, Ha is declared; otherwise,
move to the next stage.

Bayesian statistics may also extend the PTIT and CIT to
other distributions. Let Y;~ F(8), for some distribution F(.)
with parameter vector 6, j = 1, 2, ..., 24 (or some other
sample size) and let g(8) denote the mean of the
distribution. For the PTIT, a lower 100(1 — a)/100p%
Bayesian tolerance limit is given by the lower 100(1 — a)%
quantile of the posterior distribution T, = F (6, p)|Y and C;
may be given as the lower 100(1 — a)% posterior
quantile of g(B). Thus, the generalization of Eq. (3) is given

by Eq. (4).

pi = Pr (F~1(8,p) > L and g(0) > M|Y;) (4)

As before, if p; > 1 — a;, Hp is declared at the ™" stage;
otherwise, move to the next stage.

For normally distributed data and vaguely informative
priors, the Bayesian method should perform similarly to
the frequentist procedures described in earlier sections.
The Bayesian method is demonstrated in the results with
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SN and T-distributed computer-generated data with (B =
-3,€=88, w=4)and (y =5, e =85, w = 2), respectively.

RESULTS
Monte Carlo Simulations

USP <711> and PTIT

To determine the operating characteristics for satisfying
the requirements USP <711> and the PTIT alone using Eq.
(1) to test H1, a Monte Carlo simulation was conducted.
The operating characteristics for stage 3 (overall
probability) are provided in Figure 2.

From Figure 2, calibration of the PTIT with USP <711>
can be determined in several places. For example, the
operating characteristics match up well when o =3, p =
0.85 and 6 = 5. From our experience, o = 2-3% stands as
a typical range, with 1-2% and 3-5% representing tight
and variable dissolution methods, respectively. Producers
with an SD that falls outside of the range of these
simulations are encouraged to conduct their own set of
simulations to examine the operating characteristics for
their specific analytical circumstances. In this work, the
PTIT with 0 =3, p = 0.85, § = 5 stands as a reasonable
point of comparison against USP <711>. Given the set
of parameters, the PTIT procedure rewards lower SD
and penalizes larger SD compared to USP <711>. This is
a desirable feature of the PTIT. Another potential PTIT
choiceis0=2.5,p=0.90, 6 =5. Earlier, p=0.92 and 6 = 15
was suggested to be a reasonable choice, but, from Figure
2, one can infer that this scenario would be far too liberal
to match with USP <711> until o = 6, which represents a
highly variable dissolution method. In practice, for batch
release characterization and testing, one should choose a
PTIT that is more conservative than the USP <711> criteria
(Table 1).

The operating characteristics for each stage of the PTIT
with p=0.85and 6 =5 are shown in Supplementary Figure
S1. Across all stages, relative to USP <711>, the PTIT is
more liberal with small SD values and more conservative
with larger SD values.

USP <711>and PTIT + CIT

To determine the operating characteristics for satisfying
the requirements of USP <711> and the PTIT+CIT, using
Eg. (1) to test H1 and Eq. (2) to test H2, a Monte Carlo
simulation was conducted. The operating characteristics
for stage 3 (overall probability) are provided in Figure S2
with C; (/) > Q (v = 0). As expected, one cannot calibrate
the PTIT+CIT to match with USP <711> for any value of p
or 8 when ¢ 2 2.5. In Figure 3, the operating characteristic
of the PTIT+CIT with C; (/) > Q - 3 (y = 3) is compared to
the PTIT alone, with 6 = 5, 10. When & = 5, there is no
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sample size are shown in Figure S3. Doubling and tripling
the sample size improves the operating characteristic of
the PTIT but cannot match that of USP <711> for 0 > 4.5%.

PTIT with Multi-Stage Testing

As shown in Figure S4, the number of stages does not
appear to affect the probability to satisfy H1 with the
PTIT. Because staging may affect efficiency, the expected
number of dosage units was calculated. For single-stage
testing, the number of units is always 24. For two-stage
testing, the expected number of unitsis 12 + 12 x (1 —p4),
where p; is the probability to meet the requirements of
the PTIT in stage 1. For three-stage testing, the expected
number of unitsis 6 + 6 x (1 — p1) + 12 x (1 — py), where p;
is the probability to meet the requirements of the PTIT in
stage i, (=1 or 2). The expected number of dosage units
are shown in Figure S5, which indicates that multi-stage
testing generally requires fewer dosage units, making
it the more efficient option. This advantage must be
balanced against the requirement of representativeness.

Robustness of the PTIT to Non-Normality

Figure S6 shows a normal distribution with parameters
K =85 and o = 3.04; an SN distribution with parameters
B=-4,€=288.3, and w =4.2; and a T distribution with
parameters y = 3, € = 85, and w = 2.1, each possessing a
tail probability below Q = 80% of 0.05. The scenarios f =0
for SN and y = oo for T represent the normal distribution.
The operating characteristics are shown in Figure S7. It
appears that skewness and excess tail probability both
drive operating characteristic probabilities lower. Thus,
for the SN and T distributions, it may be inferred that the
PTIT shows robustness to deviations from normality.

Bayesian Methods for Non-Normality

To demonstrate the Bayesian method, 24 observations
were generated and split into three stages, respectively,
fromthe SN (B=-3,€=88, w=4)andT(y=5,€=85 w=
2) distributions. The results are provided in Table S1 and
Figure S8. The mean for both distributions is 85%, and the
5% and 95% quantiles of the two distributions are similar.

The PTIT, CIT, and probability p; from Eq. (4) were
calculated by correctly assuming the SN and T
distributions. For model fitting, vaguely informative prior
distributions are given by the following, where HC = half-
Cauchy, T' is the gamma distribution with parameters
shape (sh) and scale (sc), and Q = 80%.

e SN:B~T(y=3,e=0,w=1);e~N (u=Q, 0 =10); w~HC (0, 1)
e T.y~I'(sh=2,sc=0.1); e~N (u=Q, 0 =10); w~HC (0, 1)

Parameter estimates (posterior medians) with 95%
credible limits for the SN and T distributions are provided
in Tables S2 and S3, respectively. Results of testing are
given in Table 2, which shows that the SN-generated data
fails stages 1 and 2 but passes in stage 3. The T-generated
data would fail stage 1 but pass at stage 2. The same
conclusion was drawn using PTIT+CIT and Eq. (3) for the
assessment.

DISCUSSION

Dissolution testing for the purpose of assuring
drug product quality has a long history as part of
pharmaceutical company’s overall control strategy. USP
<711> sets forth a compendial standard of quality and has
often been used for batch release testing (1). Although
this practice has been criticized by both the scientific
community and the FDA, the limited literature on the topic
has had little influence in changing industry practices.
Consequently, this study provides an updated view of an
existing statistically based decision procedure.

The PTIT statistical approach for batch release has been
previously proposed for content uniformity and more
recently, for dissolution. The current study was built upon
this approach and proposes a flexible PTIT statistical
procedure that permits varying the decision rule criterion,
the number of stages and sample sizes, and proposed a
Bayesian counterpart with a decision criterion supported
by a posterior probability.

Table 2. Results of Bayesian PTIT, CIT, and Posterior Probability for Batch Release Testing with Q = 80%

SN 1 0.00009 0.99991 58.9 (fail) 72.3 (fail) 0.957 (fail)
2 0.005544 0.994456 74.5 (fail) 79.9 0.992 (fail)
3 0.048242 0.951758 78.6 83.2 >0.999

T 1 0.00009 0.99991 63.3 (fail) 76.0 (fail) 0.988 (fail)
2 0.005544 0.994456 79.1 82.9 >0.999
3 0.048242 0.951758 81.4 84.5 >0.999

%alpha-spending values from O’Brien and Fleming (11).
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It is encouraging to observe the increasing regulatory
acceptance of Bayesian approaches. A Bayesian PTIT
approach can offer three advantages:

1. The Bayesian perspective supports patient-centric
risk-based release decisions by quantifying batch
quality probabilistically.

2. When prior knowledge about underlying model
parameters (e.g., mean and SD) can be justified
from representative historical studies, the
Bayesian paradigm provides distributional tools
for expressing that knowledge quantitatively
and incorporating it seamlessly into the decision
process.

3. For products that require more complex modeling
(e.g., non-normal, hierarchical, or nonlinear
models), non-Bayesian approaches may require
approximations or even be intractable. Bayesian
methods are less dependent on analytical
derivations and provide exact solutions to any
desired degree of Monte Carlo accuracy.

An alpha spending adjustment based on the O’Brien and
Fleming method was implemented in the multiple stage
testing to accommodate sequential testing (12). For
convenience and for comparative purposes, this study
assessed operating characteristics using the same sample
sizes as given in the USP <711> three-stage test with Q =
80% at chosen values of o and p (proportion above Q).
Given the set of parameters, the PTIT procedure rewards
lower variability and penalizes larger variability compared
to USP <711>. For typical parameter values, it is a more
stringent test procedure than the USP <711> rules. The
addition of a simultaneous test on the batch mean value
was found to provide little, if any, advantage in forming a
more informative or more stringent test. Robustness of
the PTIT procedure was studied through the assessment
of mild skewness and wide tails. For both cases, the
PTIT procedure showed robustness to departures from
normality, especially in those cases where the mean was
close to Q. Finally, a Bayesian version of the proposed test
was detailed, with the possibility of the incorporation
of appropriate prior information and non-normal data
distributions. Inference is then provided in terms of the
posterior probabilities.

Although PTIT procedures have been proposed previously,
we are not aware of any approved drug product that
employs this approach to assure conformance to the USP
<711> standard. It is important to understand that there
is always some probability that a given dataset passes the

PTIT as we have described it but fails to meet USP <711>
criteria (1). The operating characteristic curves in this
work demonstrate that the probability to declare HA with
the PTIT can be no larger than the probability to meet the
USP requirements.

This study is not proposing to change or replace the USP
<711> compendial standard. The intent is to propose
a coherent statistical framework for batch release
decisions that, if passed, will provide assurance that the
test batch meets the existing compendial standard with
similar or smaller probability. This PTIT test is framed as a
batch release decision tool, but it seems reasonable that a
similar PTIT, with appropriately adjusted parameters, may
also be useful for other purposes, such as developmental
or investigational decision making.

CONCLUSION

The need for a statistically based decision procedure
for dissolution release testing was the motivation for
developing this procedure, especially in view of the
widespread but inappropriate application of USP <711>
for batch release by companies. The proposed Bayesian
PTIT approach promotes patient centric decision-making
by allowing customizable criteria, direct risk control,
and the ability to integrate historical data. It provides
strict evaluation standards, ensuring a rigorous risk
control strategy with good performance characteristics
relative to the USP <711> criteria. The proposed PTIT
method offers a robust statistical framework for reliable
drug product quality assurance and is easily adapted to
conform to companies’ risk tolerance practices specific to
the product and the process.
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